Solve for x
x\geq 9
Graph
Share
Copied to clipboard
\frac{1}{2}x+\frac{1}{2}\leq \frac{2}{3}x-1
Use the distributive property to multiply \frac{1}{2} by x+1.
\frac{1}{2}x+\frac{1}{2}-\frac{2}{3}x\leq -1
Subtract \frac{2}{3}x from both sides.
-\frac{1}{6}x+\frac{1}{2}\leq -1
Combine \frac{1}{2}x and -\frac{2}{3}x to get -\frac{1}{6}x.
-\frac{1}{6}x\leq -1-\frac{1}{2}
Subtract \frac{1}{2} from both sides.
-\frac{1}{6}x\leq -\frac{2}{2}-\frac{1}{2}
Convert -1 to fraction -\frac{2}{2}.
-\frac{1}{6}x\leq \frac{-2-1}{2}
Since -\frac{2}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{6}x\leq -\frac{3}{2}
Subtract 1 from -2 to get -3.
x\geq -\frac{3}{2}\left(-6\right)
Multiply both sides by -6, the reciprocal of -\frac{1}{6}. Since -\frac{1}{6} is negative, the inequality direction is changed.
x\geq \frac{-3\left(-6\right)}{2}
Express -\frac{3}{2}\left(-6\right) as a single fraction.
x\geq \frac{18}{2}
Multiply -3 and -6 to get 18.
x\geq 9
Divide 18 by 2 to get 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}