Solve for t
t=\frac{2\sqrt{6}}{3}+4\approx 5.632993162
t=-\frac{2\sqrt{6}}{3}+4\approx 2.367006838
Share
Copied to clipboard
\frac{1\times 6}{2\times 5}\left(8-t\right)t=\frac{1}{3}\times 24
Multiply \frac{1}{2} times \frac{6}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{6}{10}\left(8-t\right)t=\frac{1}{3}\times 24
Do the multiplications in the fraction \frac{1\times 6}{2\times 5}.
\frac{3}{5}\left(8-t\right)t=\frac{1}{3}\times 24
Reduce the fraction \frac{6}{10} to lowest terms by extracting and canceling out 2.
\left(\frac{3}{5}\times 8+\frac{3}{5}\left(-1\right)t\right)t=\frac{1}{3}\times 24
Use the distributive property to multiply \frac{3}{5} by 8-t.
\left(\frac{3\times 8}{5}+\frac{3}{5}\left(-1\right)t\right)t=\frac{1}{3}\times 24
Express \frac{3}{5}\times 8 as a single fraction.
\left(\frac{24}{5}+\frac{3}{5}\left(-1\right)t\right)t=\frac{1}{3}\times 24
Multiply 3 and 8 to get 24.
\left(\frac{24}{5}-\frac{3}{5}t\right)t=\frac{1}{3}\times 24
Multiply \frac{3}{5} and -1 to get -\frac{3}{5}.
\frac{24}{5}t-\frac{3}{5}tt=\frac{1}{3}\times 24
Use the distributive property to multiply \frac{24}{5}-\frac{3}{5}t by t.
\frac{24}{5}t-\frac{3}{5}t^{2}=\frac{1}{3}\times 24
Multiply t and t to get t^{2}.
\frac{24}{5}t-\frac{3}{5}t^{2}=\frac{24}{3}
Multiply \frac{1}{3} and 24 to get \frac{24}{3}.
\frac{24}{5}t-\frac{3}{5}t^{2}=8
Divide 24 by 3 to get 8.
\frac{24}{5}t-\frac{3}{5}t^{2}-8=0
Subtract 8 from both sides.
-\frac{3}{5}t^{2}+\frac{24}{5}t-8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-\frac{24}{5}±\sqrt{\left(\frac{24}{5}\right)^{2}-4\left(-\frac{3}{5}\right)\left(-8\right)}}{2\left(-\frac{3}{5}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{3}{5} for a, \frac{24}{5} for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\frac{24}{5}±\sqrt{\frac{576}{25}-4\left(-\frac{3}{5}\right)\left(-8\right)}}{2\left(-\frac{3}{5}\right)}
Square \frac{24}{5} by squaring both the numerator and the denominator of the fraction.
t=\frac{-\frac{24}{5}±\sqrt{\frac{576}{25}+\frac{12}{5}\left(-8\right)}}{2\left(-\frac{3}{5}\right)}
Multiply -4 times -\frac{3}{5}.
t=\frac{-\frac{24}{5}±\sqrt{\frac{576}{25}-\frac{96}{5}}}{2\left(-\frac{3}{5}\right)}
Multiply \frac{12}{5} times -8.
t=\frac{-\frac{24}{5}±\sqrt{\frac{96}{25}}}{2\left(-\frac{3}{5}\right)}
Add \frac{576}{25} to -\frac{96}{5} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
t=\frac{-\frac{24}{5}±\frac{4\sqrt{6}}{5}}{2\left(-\frac{3}{5}\right)}
Take the square root of \frac{96}{25}.
t=\frac{-\frac{24}{5}±\frac{4\sqrt{6}}{5}}{-\frac{6}{5}}
Multiply 2 times -\frac{3}{5}.
t=\frac{4\sqrt{6}-24}{-\frac{6}{5}\times 5}
Now solve the equation t=\frac{-\frac{24}{5}±\frac{4\sqrt{6}}{5}}{-\frac{6}{5}} when ± is plus. Add -\frac{24}{5} to \frac{4\sqrt{6}}{5}.
t=-\frac{2\sqrt{6}}{3}+4
Divide \frac{-24+4\sqrt{6}}{5} by -\frac{6}{5} by multiplying \frac{-24+4\sqrt{6}}{5} by the reciprocal of -\frac{6}{5}.
t=\frac{-4\sqrt{6}-24}{-\frac{6}{5}\times 5}
Now solve the equation t=\frac{-\frac{24}{5}±\frac{4\sqrt{6}}{5}}{-\frac{6}{5}} when ± is minus. Subtract \frac{4\sqrt{6}}{5} from -\frac{24}{5}.
t=\frac{2\sqrt{6}}{3}+4
Divide \frac{-24-4\sqrt{6}}{5} by -\frac{6}{5} by multiplying \frac{-24-4\sqrt{6}}{5} by the reciprocal of -\frac{6}{5}.
t=-\frac{2\sqrt{6}}{3}+4 t=\frac{2\sqrt{6}}{3}+4
The equation is now solved.
\frac{1\times 6}{2\times 5}\left(8-t\right)t=\frac{1}{3}\times 24
Multiply \frac{1}{2} times \frac{6}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{6}{10}\left(8-t\right)t=\frac{1}{3}\times 24
Do the multiplications in the fraction \frac{1\times 6}{2\times 5}.
\frac{3}{5}\left(8-t\right)t=\frac{1}{3}\times 24
Reduce the fraction \frac{6}{10} to lowest terms by extracting and canceling out 2.
\left(\frac{3}{5}\times 8+\frac{3}{5}\left(-1\right)t\right)t=\frac{1}{3}\times 24
Use the distributive property to multiply \frac{3}{5} by 8-t.
\left(\frac{3\times 8}{5}+\frac{3}{5}\left(-1\right)t\right)t=\frac{1}{3}\times 24
Express \frac{3}{5}\times 8 as a single fraction.
\left(\frac{24}{5}+\frac{3}{5}\left(-1\right)t\right)t=\frac{1}{3}\times 24
Multiply 3 and 8 to get 24.
\left(\frac{24}{5}-\frac{3}{5}t\right)t=\frac{1}{3}\times 24
Multiply \frac{3}{5} and -1 to get -\frac{3}{5}.
\frac{24}{5}t-\frac{3}{5}tt=\frac{1}{3}\times 24
Use the distributive property to multiply \frac{24}{5}-\frac{3}{5}t by t.
\frac{24}{5}t-\frac{3}{5}t^{2}=\frac{1}{3}\times 24
Multiply t and t to get t^{2}.
\frac{24}{5}t-\frac{3}{5}t^{2}=\frac{24}{3}
Multiply \frac{1}{3} and 24 to get \frac{24}{3}.
\frac{24}{5}t-\frac{3}{5}t^{2}=8
Divide 24 by 3 to get 8.
-\frac{3}{5}t^{2}+\frac{24}{5}t=8
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-\frac{3}{5}t^{2}+\frac{24}{5}t}{-\frac{3}{5}}=\frac{8}{-\frac{3}{5}}
Divide both sides of the equation by -\frac{3}{5}, which is the same as multiplying both sides by the reciprocal of the fraction.
t^{2}+\frac{\frac{24}{5}}{-\frac{3}{5}}t=\frac{8}{-\frac{3}{5}}
Dividing by -\frac{3}{5} undoes the multiplication by -\frac{3}{5}.
t^{2}-8t=\frac{8}{-\frac{3}{5}}
Divide \frac{24}{5} by -\frac{3}{5} by multiplying \frac{24}{5} by the reciprocal of -\frac{3}{5}.
t^{2}-8t=-\frac{40}{3}
Divide 8 by -\frac{3}{5} by multiplying 8 by the reciprocal of -\frac{3}{5}.
t^{2}-8t+\left(-4\right)^{2}=-\frac{40}{3}+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-8t+16=-\frac{40}{3}+16
Square -4.
t^{2}-8t+16=\frac{8}{3}
Add -\frac{40}{3} to 16.
\left(t-4\right)^{2}=\frac{8}{3}
Factor t^{2}-8t+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-4\right)^{2}}=\sqrt{\frac{8}{3}}
Take the square root of both sides of the equation.
t-4=\frac{2\sqrt{6}}{3} t-4=-\frac{2\sqrt{6}}{3}
Simplify.
t=\frac{2\sqrt{6}}{3}+4 t=-\frac{2\sqrt{6}}{3}+4
Add 4 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}