Solve for x
x=1
Graph
Share
Copied to clipboard
\frac{1}{2}\times 3x+\frac{1}{2}\left(-3\right)-\frac{1}{5}\left(5x-6\right)=0.2
Use the distributive property to multiply \frac{1}{2} by 3x-3.
\frac{3}{2}x+\frac{1}{2}\left(-3\right)-\frac{1}{5}\left(5x-6\right)=0.2
Multiply \frac{1}{2} and 3 to get \frac{3}{2}.
\frac{3}{2}x+\frac{-3}{2}-\frac{1}{5}\left(5x-6\right)=0.2
Multiply \frac{1}{2} and -3 to get \frac{-3}{2}.
\frac{3}{2}x-\frac{3}{2}-\frac{1}{5}\left(5x-6\right)=0.2
Fraction \frac{-3}{2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
\frac{3}{2}x-\frac{3}{2}-\frac{1}{5}\times 5x-\frac{1}{5}\left(-6\right)=0.2
Use the distributive property to multiply -\frac{1}{5} by 5x-6.
\frac{3}{2}x-\frac{3}{2}-x-\frac{1}{5}\left(-6\right)=0.2
Cancel out 5 and 5.
\frac{3}{2}x-\frac{3}{2}-x+\frac{-\left(-6\right)}{5}=0.2
Express -\frac{1}{5}\left(-6\right) as a single fraction.
\frac{3}{2}x-\frac{3}{2}-x+\frac{6}{5}=0.2
Multiply -1 and -6 to get 6.
\frac{1}{2}x-\frac{3}{2}+\frac{6}{5}=0.2
Combine \frac{3}{2}x and -x to get \frac{1}{2}x.
\frac{1}{2}x-\frac{15}{10}+\frac{12}{10}=0.2
Least common multiple of 2 and 5 is 10. Convert -\frac{3}{2} and \frac{6}{5} to fractions with denominator 10.
\frac{1}{2}x+\frac{-15+12}{10}=0.2
Since -\frac{15}{10} and \frac{12}{10} have the same denominator, add them by adding their numerators.
\frac{1}{2}x-\frac{3}{10}=0.2
Add -15 and 12 to get -3.
\frac{1}{2}x=0.2+\frac{3}{10}
Add \frac{3}{10} to both sides.
\frac{1}{2}x=\frac{1}{5}+\frac{3}{10}
Convert decimal number 0.2 to fraction \frac{2}{10}. Reduce the fraction \frac{2}{10} to lowest terms by extracting and canceling out 2.
\frac{1}{2}x=\frac{2}{10}+\frac{3}{10}
Least common multiple of 5 and 10 is 10. Convert \frac{1}{5} and \frac{3}{10} to fractions with denominator 10.
\frac{1}{2}x=\frac{2+3}{10}
Since \frac{2}{10} and \frac{3}{10} have the same denominator, add them by adding their numerators.
\frac{1}{2}x=\frac{5}{10}
Add 2 and 3 to get 5.
\frac{1}{2}x=\frac{1}{2}
Reduce the fraction \frac{5}{10} to lowest terms by extracting and canceling out 5.
x=\frac{1}{2}\times 2
Multiply both sides by 2, the reciprocal of \frac{1}{2}.
x=1
Cancel out 2 and 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}