Solve for x
x = \frac{21}{2} = 10\frac{1}{2} = 10.5
Graph
Share
Copied to clipboard
\frac{1}{2}\times 3x+\frac{1}{2}\times 3-\frac{1}{3}\left(4x-3\right)=\frac{1}{6}\left(5x-27\right)
Use the distributive property to multiply \frac{1}{2} by 3x+3.
\frac{3}{2}x+\frac{1}{2}\times 3-\frac{1}{3}\left(4x-3\right)=\frac{1}{6}\left(5x-27\right)
Multiply \frac{1}{2} and 3 to get \frac{3}{2}.
\frac{3}{2}x+\frac{3}{2}-\frac{1}{3}\left(4x-3\right)=\frac{1}{6}\left(5x-27\right)
Multiply \frac{1}{2} and 3 to get \frac{3}{2}.
\frac{3}{2}x+\frac{3}{2}-\frac{1}{3}\times 4x-\frac{1}{3}\left(-3\right)=\frac{1}{6}\left(5x-27\right)
Use the distributive property to multiply -\frac{1}{3} by 4x-3.
\frac{3}{2}x+\frac{3}{2}+\frac{-4}{3}x-\frac{1}{3}\left(-3\right)=\frac{1}{6}\left(5x-27\right)
Express -\frac{1}{3}\times 4 as a single fraction.
\frac{3}{2}x+\frac{3}{2}-\frac{4}{3}x-\frac{1}{3}\left(-3\right)=\frac{1}{6}\left(5x-27\right)
Fraction \frac{-4}{3} can be rewritten as -\frac{4}{3} by extracting the negative sign.
\frac{3}{2}x+\frac{3}{2}-\frac{4}{3}x+\frac{-\left(-3\right)}{3}=\frac{1}{6}\left(5x-27\right)
Express -\frac{1}{3}\left(-3\right) as a single fraction.
\frac{3}{2}x+\frac{3}{2}-\frac{4}{3}x+\frac{3}{3}=\frac{1}{6}\left(5x-27\right)
Multiply -1 and -3 to get 3.
\frac{3}{2}x+\frac{3}{2}-\frac{4}{3}x+1=\frac{1}{6}\left(5x-27\right)
Divide 3 by 3 to get 1.
\frac{1}{6}x+\frac{3}{2}+1=\frac{1}{6}\left(5x-27\right)
Combine \frac{3}{2}x and -\frac{4}{3}x to get \frac{1}{6}x.
\frac{1}{6}x+\frac{3}{2}+\frac{2}{2}=\frac{1}{6}\left(5x-27\right)
Convert 1 to fraction \frac{2}{2}.
\frac{1}{6}x+\frac{3+2}{2}=\frac{1}{6}\left(5x-27\right)
Since \frac{3}{2} and \frac{2}{2} have the same denominator, add them by adding their numerators.
\frac{1}{6}x+\frac{5}{2}=\frac{1}{6}\left(5x-27\right)
Add 3 and 2 to get 5.
\frac{1}{6}x+\frac{5}{2}=\frac{1}{6}\times 5x+\frac{1}{6}\left(-27\right)
Use the distributive property to multiply \frac{1}{6} by 5x-27.
\frac{1}{6}x+\frac{5}{2}=\frac{5}{6}x+\frac{1}{6}\left(-27\right)
Multiply \frac{1}{6} and 5 to get \frac{5}{6}.
\frac{1}{6}x+\frac{5}{2}=\frac{5}{6}x+\frac{-27}{6}
Multiply \frac{1}{6} and -27 to get \frac{-27}{6}.
\frac{1}{6}x+\frac{5}{2}=\frac{5}{6}x-\frac{9}{2}
Reduce the fraction \frac{-27}{6} to lowest terms by extracting and canceling out 3.
\frac{1}{6}x+\frac{5}{2}-\frac{5}{6}x=-\frac{9}{2}
Subtract \frac{5}{6}x from both sides.
-\frac{2}{3}x+\frac{5}{2}=-\frac{9}{2}
Combine \frac{1}{6}x and -\frac{5}{6}x to get -\frac{2}{3}x.
-\frac{2}{3}x=-\frac{9}{2}-\frac{5}{2}
Subtract \frac{5}{2} from both sides.
-\frac{2}{3}x=\frac{-9-5}{2}
Since -\frac{9}{2} and \frac{5}{2} have the same denominator, subtract them by subtracting their numerators.
-\frac{2}{3}x=\frac{-14}{2}
Subtract 5 from -9 to get -14.
-\frac{2}{3}x=-7
Divide -14 by 2 to get -7.
x=-7\left(-\frac{3}{2}\right)
Multiply both sides by -\frac{3}{2}, the reciprocal of -\frac{2}{3}.
x=\frac{-7\left(-3\right)}{2}
Express -7\left(-\frac{3}{2}\right) as a single fraction.
x=\frac{21}{2}
Multiply -7 and -3 to get 21.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}