Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{2}\times 3x+\frac{1}{2}\times 3-\frac{1}{3}\left(4x-3\right)=\frac{1}{6}\left(5x-27\right)
Use the distributive property to multiply \frac{1}{2} by 3x+3.
\frac{3}{2}x+\frac{1}{2}\times 3-\frac{1}{3}\left(4x-3\right)=\frac{1}{6}\left(5x-27\right)
Multiply \frac{1}{2} and 3 to get \frac{3}{2}.
\frac{3}{2}x+\frac{3}{2}-\frac{1}{3}\left(4x-3\right)=\frac{1}{6}\left(5x-27\right)
Multiply \frac{1}{2} and 3 to get \frac{3}{2}.
\frac{3}{2}x+\frac{3}{2}-\frac{1}{3}\times 4x-\frac{1}{3}\left(-3\right)=\frac{1}{6}\left(5x-27\right)
Use the distributive property to multiply -\frac{1}{3} by 4x-3.
\frac{3}{2}x+\frac{3}{2}+\frac{-4}{3}x-\frac{1}{3}\left(-3\right)=\frac{1}{6}\left(5x-27\right)
Express -\frac{1}{3}\times 4 as a single fraction.
\frac{3}{2}x+\frac{3}{2}-\frac{4}{3}x-\frac{1}{3}\left(-3\right)=\frac{1}{6}\left(5x-27\right)
Fraction \frac{-4}{3} can be rewritten as -\frac{4}{3} by extracting the negative sign.
\frac{3}{2}x+\frac{3}{2}-\frac{4}{3}x+\frac{-\left(-3\right)}{3}=\frac{1}{6}\left(5x-27\right)
Express -\frac{1}{3}\left(-3\right) as a single fraction.
\frac{3}{2}x+\frac{3}{2}-\frac{4}{3}x+\frac{3}{3}=\frac{1}{6}\left(5x-27\right)
Multiply -1 and -3 to get 3.
\frac{3}{2}x+\frac{3}{2}-\frac{4}{3}x+1=\frac{1}{6}\left(5x-27\right)
Divide 3 by 3 to get 1.
\frac{1}{6}x+\frac{3}{2}+1=\frac{1}{6}\left(5x-27\right)
Combine \frac{3}{2}x and -\frac{4}{3}x to get \frac{1}{6}x.
\frac{1}{6}x+\frac{3}{2}+\frac{2}{2}=\frac{1}{6}\left(5x-27\right)
Convert 1 to fraction \frac{2}{2}.
\frac{1}{6}x+\frac{3+2}{2}=\frac{1}{6}\left(5x-27\right)
Since \frac{3}{2} and \frac{2}{2} have the same denominator, add them by adding their numerators.
\frac{1}{6}x+\frac{5}{2}=\frac{1}{6}\left(5x-27\right)
Add 3 and 2 to get 5.
\frac{1}{6}x+\frac{5}{2}=\frac{1}{6}\times 5x+\frac{1}{6}\left(-27\right)
Use the distributive property to multiply \frac{1}{6} by 5x-27.
\frac{1}{6}x+\frac{5}{2}=\frac{5}{6}x+\frac{1}{6}\left(-27\right)
Multiply \frac{1}{6} and 5 to get \frac{5}{6}.
\frac{1}{6}x+\frac{5}{2}=\frac{5}{6}x+\frac{-27}{6}
Multiply \frac{1}{6} and -27 to get \frac{-27}{6}.
\frac{1}{6}x+\frac{5}{2}=\frac{5}{6}x-\frac{9}{2}
Reduce the fraction \frac{-27}{6} to lowest terms by extracting and canceling out 3.
\frac{1}{6}x+\frac{5}{2}-\frac{5}{6}x=-\frac{9}{2}
Subtract \frac{5}{6}x from both sides.
-\frac{2}{3}x+\frac{5}{2}=-\frac{9}{2}
Combine \frac{1}{6}x and -\frac{5}{6}x to get -\frac{2}{3}x.
-\frac{2}{3}x=-\frac{9}{2}-\frac{5}{2}
Subtract \frac{5}{2} from both sides.
-\frac{2}{3}x=\frac{-9-5}{2}
Since -\frac{9}{2} and \frac{5}{2} have the same denominator, subtract them by subtracting their numerators.
-\frac{2}{3}x=\frac{-14}{2}
Subtract 5 from -9 to get -14.
-\frac{2}{3}x=-7
Divide -14 by 2 to get -7.
x=-7\left(-\frac{3}{2}\right)
Multiply both sides by -\frac{3}{2}, the reciprocal of -\frac{2}{3}.
x=\frac{-7\left(-3\right)}{2}
Express -7\left(-\frac{3}{2}\right) as a single fraction.
x=\frac{21}{2}
Multiply -7 and -3 to get 21.