Evaluate
\frac{25t\left(3-t\right)}{24}
Expand
-\frac{25t^{2}}{24}+\frac{25t}{8}
Share
Copied to clipboard
\frac{1\times 5}{2\times 3}\left(3-t\right)t\times \frac{5}{4}
Multiply \frac{1}{2} times \frac{5}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{5}{6}\left(3-t\right)t\times \frac{5}{4}
Do the multiplications in the fraction \frac{1\times 5}{2\times 3}.
\frac{5\times 5}{6\times 4}\left(3-t\right)t
Multiply \frac{5}{6} times \frac{5}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{25}{24}\left(3-t\right)t
Do the multiplications in the fraction \frac{5\times 5}{6\times 4}.
\left(\frac{25}{24}\times 3+\frac{25}{24}\left(-1\right)t\right)t
Use the distributive property to multiply \frac{25}{24} by 3-t.
\left(\frac{25\times 3}{24}+\frac{25}{24}\left(-1\right)t\right)t
Express \frac{25}{24}\times 3 as a single fraction.
\left(\frac{75}{24}+\frac{25}{24}\left(-1\right)t\right)t
Multiply 25 and 3 to get 75.
\left(\frac{25}{8}+\frac{25}{24}\left(-1\right)t\right)t
Reduce the fraction \frac{75}{24} to lowest terms by extracting and canceling out 3.
\left(\frac{25}{8}-\frac{25}{24}t\right)t
Multiply \frac{25}{24} and -1 to get -\frac{25}{24}.
\frac{25}{8}t-\frac{25}{24}tt
Use the distributive property to multiply \frac{25}{8}-\frac{25}{24}t by t.
\frac{25}{8}t-\frac{25}{24}t^{2}
Multiply t and t to get t^{2}.
\frac{1\times 5}{2\times 3}\left(3-t\right)t\times \frac{5}{4}
Multiply \frac{1}{2} times \frac{5}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{5}{6}\left(3-t\right)t\times \frac{5}{4}
Do the multiplications in the fraction \frac{1\times 5}{2\times 3}.
\frac{5\times 5}{6\times 4}\left(3-t\right)t
Multiply \frac{5}{6} times \frac{5}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{25}{24}\left(3-t\right)t
Do the multiplications in the fraction \frac{5\times 5}{6\times 4}.
\left(\frac{25}{24}\times 3+\frac{25}{24}\left(-1\right)t\right)t
Use the distributive property to multiply \frac{25}{24} by 3-t.
\left(\frac{25\times 3}{24}+\frac{25}{24}\left(-1\right)t\right)t
Express \frac{25}{24}\times 3 as a single fraction.
\left(\frac{75}{24}+\frac{25}{24}\left(-1\right)t\right)t
Multiply 25 and 3 to get 75.
\left(\frac{25}{8}+\frac{25}{24}\left(-1\right)t\right)t
Reduce the fraction \frac{75}{24} to lowest terms by extracting and canceling out 3.
\left(\frac{25}{8}-\frac{25}{24}t\right)t
Multiply \frac{25}{24} and -1 to get -\frac{25}{24}.
\frac{25}{8}t-\frac{25}{24}tt
Use the distributive property to multiply \frac{25}{8}-\frac{25}{24}t by t.
\frac{25}{8}t-\frac{25}{24}t^{2}
Multiply t and t to get t^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}