Solve for t
t = \frac{3 \sqrt{2} + 3}{2} \approx 3.621320344
t=\frac{3-3\sqrt{2}}{2}\approx -0.621320344
Share
Copied to clipboard
\frac{1\times 5}{2\times 3}\left(3-t\right)t\times \frac{4}{5}=\frac{9}{2}-6
Multiply \frac{1}{2} times \frac{5}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{5}{6}\left(3-t\right)t\times \frac{4}{5}=\frac{9}{2}-6
Do the multiplications in the fraction \frac{1\times 5}{2\times 3}.
\frac{5\times 4}{6\times 5}\left(3-t\right)t=\frac{9}{2}-6
Multiply \frac{5}{6} times \frac{4}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{4}{6}\left(3-t\right)t=\frac{9}{2}-6
Cancel out 5 in both numerator and denominator.
\frac{2}{3}\left(3-t\right)t=\frac{9}{2}-6
Reduce the fraction \frac{4}{6} to lowest terms by extracting and canceling out 2.
\left(\frac{2}{3}\times 3+\frac{2}{3}\left(-1\right)t\right)t=\frac{9}{2}-6
Use the distributive property to multiply \frac{2}{3} by 3-t.
\left(2+\frac{2}{3}\left(-1\right)t\right)t=\frac{9}{2}-6
Cancel out 3 and 3.
\left(2-\frac{2}{3}t\right)t=\frac{9}{2}-6
Multiply \frac{2}{3} and -1 to get -\frac{2}{3}.
2t-\frac{2}{3}tt=\frac{9}{2}-6
Use the distributive property to multiply 2-\frac{2}{3}t by t.
2t-\frac{2}{3}t^{2}=\frac{9}{2}-6
Multiply t and t to get t^{2}.
2t-\frac{2}{3}t^{2}=\frac{9}{2}-\frac{12}{2}
Convert 6 to fraction \frac{12}{2}.
2t-\frac{2}{3}t^{2}=\frac{9-12}{2}
Since \frac{9}{2} and \frac{12}{2} have the same denominator, subtract them by subtracting their numerators.
2t-\frac{2}{3}t^{2}=-\frac{3}{2}
Subtract 12 from 9 to get -3.
2t-\frac{2}{3}t^{2}+\frac{3}{2}=0
Add \frac{3}{2} to both sides.
-\frac{2}{3}t^{2}+2t+\frac{3}{2}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-2±\sqrt{2^{2}-4\left(-\frac{2}{3}\right)\times \frac{3}{2}}}{2\left(-\frac{2}{3}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{2}{3} for a, 2 for b, and \frac{3}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-2±\sqrt{4-4\left(-\frac{2}{3}\right)\times \frac{3}{2}}}{2\left(-\frac{2}{3}\right)}
Square 2.
t=\frac{-2±\sqrt{4+\frac{8}{3}\times \frac{3}{2}}}{2\left(-\frac{2}{3}\right)}
Multiply -4 times -\frac{2}{3}.
t=\frac{-2±\sqrt{4+4}}{2\left(-\frac{2}{3}\right)}
Multiply \frac{8}{3} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
t=\frac{-2±\sqrt{8}}{2\left(-\frac{2}{3}\right)}
Add 4 to 4.
t=\frac{-2±2\sqrt{2}}{2\left(-\frac{2}{3}\right)}
Take the square root of 8.
t=\frac{-2±2\sqrt{2}}{-\frac{4}{3}}
Multiply 2 times -\frac{2}{3}.
t=\frac{2\sqrt{2}-2}{-\frac{4}{3}}
Now solve the equation t=\frac{-2±2\sqrt{2}}{-\frac{4}{3}} when ± is plus. Add -2 to 2\sqrt{2}.
t=\frac{3-3\sqrt{2}}{2}
Divide -2+2\sqrt{2} by -\frac{4}{3} by multiplying -2+2\sqrt{2} by the reciprocal of -\frac{4}{3}.
t=\frac{-2\sqrt{2}-2}{-\frac{4}{3}}
Now solve the equation t=\frac{-2±2\sqrt{2}}{-\frac{4}{3}} when ± is minus. Subtract 2\sqrt{2} from -2.
t=\frac{3\sqrt{2}+3}{2}
Divide -2-2\sqrt{2} by -\frac{4}{3} by multiplying -2-2\sqrt{2} by the reciprocal of -\frac{4}{3}.
t=\frac{3-3\sqrt{2}}{2} t=\frac{3\sqrt{2}+3}{2}
The equation is now solved.
\frac{1\times 5}{2\times 3}\left(3-t\right)t\times \frac{4}{5}=\frac{9}{2}-6
Multiply \frac{1}{2} times \frac{5}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{5}{6}\left(3-t\right)t\times \frac{4}{5}=\frac{9}{2}-6
Do the multiplications in the fraction \frac{1\times 5}{2\times 3}.
\frac{5\times 4}{6\times 5}\left(3-t\right)t=\frac{9}{2}-6
Multiply \frac{5}{6} times \frac{4}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{4}{6}\left(3-t\right)t=\frac{9}{2}-6
Cancel out 5 in both numerator and denominator.
\frac{2}{3}\left(3-t\right)t=\frac{9}{2}-6
Reduce the fraction \frac{4}{6} to lowest terms by extracting and canceling out 2.
\left(\frac{2}{3}\times 3+\frac{2}{3}\left(-1\right)t\right)t=\frac{9}{2}-6
Use the distributive property to multiply \frac{2}{3} by 3-t.
\left(2+\frac{2}{3}\left(-1\right)t\right)t=\frac{9}{2}-6
Cancel out 3 and 3.
\left(2-\frac{2}{3}t\right)t=\frac{9}{2}-6
Multiply \frac{2}{3} and -1 to get -\frac{2}{3}.
2t-\frac{2}{3}tt=\frac{9}{2}-6
Use the distributive property to multiply 2-\frac{2}{3}t by t.
2t-\frac{2}{3}t^{2}=\frac{9}{2}-6
Multiply t and t to get t^{2}.
2t-\frac{2}{3}t^{2}=\frac{9}{2}-\frac{12}{2}
Convert 6 to fraction \frac{12}{2}.
2t-\frac{2}{3}t^{2}=\frac{9-12}{2}
Since \frac{9}{2} and \frac{12}{2} have the same denominator, subtract them by subtracting their numerators.
2t-\frac{2}{3}t^{2}=-\frac{3}{2}
Subtract 12 from 9 to get -3.
-\frac{2}{3}t^{2}+2t=-\frac{3}{2}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-\frac{2}{3}t^{2}+2t}{-\frac{2}{3}}=-\frac{\frac{3}{2}}{-\frac{2}{3}}
Divide both sides of the equation by -\frac{2}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
t^{2}+\frac{2}{-\frac{2}{3}}t=-\frac{\frac{3}{2}}{-\frac{2}{3}}
Dividing by -\frac{2}{3} undoes the multiplication by -\frac{2}{3}.
t^{2}-3t=-\frac{\frac{3}{2}}{-\frac{2}{3}}
Divide 2 by -\frac{2}{3} by multiplying 2 by the reciprocal of -\frac{2}{3}.
t^{2}-3t=\frac{9}{4}
Divide -\frac{3}{2} by -\frac{2}{3} by multiplying -\frac{3}{2} by the reciprocal of -\frac{2}{3}.
t^{2}-3t+\left(-\frac{3}{2}\right)^{2}=\frac{9}{4}+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-3t+\frac{9}{4}=\frac{9+9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
t^{2}-3t+\frac{9}{4}=\frac{9}{2}
Add \frac{9}{4} to \frac{9}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{3}{2}\right)^{2}=\frac{9}{2}
Factor t^{2}-3t+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{3}{2}\right)^{2}}=\sqrt{\frac{9}{2}}
Take the square root of both sides of the equation.
t-\frac{3}{2}=\frac{3\sqrt{2}}{2} t-\frac{3}{2}=-\frac{3\sqrt{2}}{2}
Simplify.
t=\frac{3\sqrt{2}+3}{2} t=\frac{3-3\sqrt{2}}{2}
Add \frac{3}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}