Solve for x
x = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
x=-12
Graph
Share
Copied to clipboard
8+\frac{1}{2}x^{2}=\frac{4}{5}\left(2+x\right)^{2}
Use the distributive property to multiply \frac{1}{2} by 16+x^{2}.
8+\frac{1}{2}x^{2}=\frac{4}{5}\left(4+4x+x^{2}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+x\right)^{2}.
8+\frac{1}{2}x^{2}=\frac{16}{5}+\frac{16}{5}x+\frac{4}{5}x^{2}
Use the distributive property to multiply \frac{4}{5} by 4+4x+x^{2}.
8+\frac{1}{2}x^{2}-\frac{16}{5}=\frac{16}{5}x+\frac{4}{5}x^{2}
Subtract \frac{16}{5} from both sides.
\frac{24}{5}+\frac{1}{2}x^{2}=\frac{16}{5}x+\frac{4}{5}x^{2}
Subtract \frac{16}{5} from 8 to get \frac{24}{5}.
\frac{24}{5}+\frac{1}{2}x^{2}-\frac{16}{5}x=\frac{4}{5}x^{2}
Subtract \frac{16}{5}x from both sides.
\frac{24}{5}+\frac{1}{2}x^{2}-\frac{16}{5}x-\frac{4}{5}x^{2}=0
Subtract \frac{4}{5}x^{2} from both sides.
\frac{24}{5}-\frac{3}{10}x^{2}-\frac{16}{5}x=0
Combine \frac{1}{2}x^{2} and -\frac{4}{5}x^{2} to get -\frac{3}{10}x^{2}.
-\frac{3}{10}x^{2}-\frac{16}{5}x+\frac{24}{5}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-\frac{16}{5}\right)±\sqrt{\left(-\frac{16}{5}\right)^{2}-4\left(-\frac{3}{10}\right)\times \frac{24}{5}}}{2\left(-\frac{3}{10}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{3}{10} for a, -\frac{16}{5} for b, and \frac{24}{5} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{16}{5}\right)±\sqrt{\frac{256}{25}-4\left(-\frac{3}{10}\right)\times \frac{24}{5}}}{2\left(-\frac{3}{10}\right)}
Square -\frac{16}{5} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{16}{5}\right)±\sqrt{\frac{256}{25}+\frac{6}{5}\times \frac{24}{5}}}{2\left(-\frac{3}{10}\right)}
Multiply -4 times -\frac{3}{10}.
x=\frac{-\left(-\frac{16}{5}\right)±\sqrt{\frac{256+144}{25}}}{2\left(-\frac{3}{10}\right)}
Multiply \frac{6}{5} times \frac{24}{5} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{16}{5}\right)±\sqrt{16}}{2\left(-\frac{3}{10}\right)}
Add \frac{256}{25} to \frac{144}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{16}{5}\right)±4}{2\left(-\frac{3}{10}\right)}
Take the square root of 16.
x=\frac{\frac{16}{5}±4}{2\left(-\frac{3}{10}\right)}
The opposite of -\frac{16}{5} is \frac{16}{5}.
x=\frac{\frac{16}{5}±4}{-\frac{3}{5}}
Multiply 2 times -\frac{3}{10}.
x=\frac{\frac{36}{5}}{-\frac{3}{5}}
Now solve the equation x=\frac{\frac{16}{5}±4}{-\frac{3}{5}} when ± is plus. Add \frac{16}{5} to 4.
x=-12
Divide \frac{36}{5} by -\frac{3}{5} by multiplying \frac{36}{5} by the reciprocal of -\frac{3}{5}.
x=-\frac{\frac{4}{5}}{-\frac{3}{5}}
Now solve the equation x=\frac{\frac{16}{5}±4}{-\frac{3}{5}} when ± is minus. Subtract 4 from \frac{16}{5}.
x=\frac{4}{3}
Divide -\frac{4}{5} by -\frac{3}{5} by multiplying -\frac{4}{5} by the reciprocal of -\frac{3}{5}.
x=-12 x=\frac{4}{3}
The equation is now solved.
8+\frac{1}{2}x^{2}=\frac{4}{5}\left(2+x\right)^{2}
Use the distributive property to multiply \frac{1}{2} by 16+x^{2}.
8+\frac{1}{2}x^{2}=\frac{4}{5}\left(4+4x+x^{2}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+x\right)^{2}.
8+\frac{1}{2}x^{2}=\frac{16}{5}+\frac{16}{5}x+\frac{4}{5}x^{2}
Use the distributive property to multiply \frac{4}{5} by 4+4x+x^{2}.
8+\frac{1}{2}x^{2}-\frac{16}{5}x=\frac{16}{5}+\frac{4}{5}x^{2}
Subtract \frac{16}{5}x from both sides.
8+\frac{1}{2}x^{2}-\frac{16}{5}x-\frac{4}{5}x^{2}=\frac{16}{5}
Subtract \frac{4}{5}x^{2} from both sides.
8-\frac{3}{10}x^{2}-\frac{16}{5}x=\frac{16}{5}
Combine \frac{1}{2}x^{2} and -\frac{4}{5}x^{2} to get -\frac{3}{10}x^{2}.
-\frac{3}{10}x^{2}-\frac{16}{5}x=\frac{16}{5}-8
Subtract 8 from both sides.
-\frac{3}{10}x^{2}-\frac{16}{5}x=-\frac{24}{5}
Subtract 8 from \frac{16}{5} to get -\frac{24}{5}.
\frac{-\frac{3}{10}x^{2}-\frac{16}{5}x}{-\frac{3}{10}}=-\frac{\frac{24}{5}}{-\frac{3}{10}}
Divide both sides of the equation by -\frac{3}{10}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{\frac{16}{5}}{-\frac{3}{10}}\right)x=-\frac{\frac{24}{5}}{-\frac{3}{10}}
Dividing by -\frac{3}{10} undoes the multiplication by -\frac{3}{10}.
x^{2}+\frac{32}{3}x=-\frac{\frac{24}{5}}{-\frac{3}{10}}
Divide -\frac{16}{5} by -\frac{3}{10} by multiplying -\frac{16}{5} by the reciprocal of -\frac{3}{10}.
x^{2}+\frac{32}{3}x=16
Divide -\frac{24}{5} by -\frac{3}{10} by multiplying -\frac{24}{5} by the reciprocal of -\frac{3}{10}.
x^{2}+\frac{32}{3}x+\left(\frac{16}{3}\right)^{2}=16+\left(\frac{16}{3}\right)^{2}
Divide \frac{32}{3}, the coefficient of the x term, by 2 to get \frac{16}{3}. Then add the square of \frac{16}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{32}{3}x+\frac{256}{9}=16+\frac{256}{9}
Square \frac{16}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{32}{3}x+\frac{256}{9}=\frac{400}{9}
Add 16 to \frac{256}{9}.
\left(x+\frac{16}{3}\right)^{2}=\frac{400}{9}
Factor x^{2}+\frac{32}{3}x+\frac{256}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{16}{3}\right)^{2}}=\sqrt{\frac{400}{9}}
Take the square root of both sides of the equation.
x+\frac{16}{3}=\frac{20}{3} x+\frac{16}{3}=-\frac{20}{3}
Simplify.
x=\frac{4}{3} x=-12
Subtract \frac{16}{3} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}