Solve for y
y = \frac{243 \sqrt{2} - 216}{49} \approx 2.605181544
Graph
Share
Copied to clipboard
\frac{1}{2}\left(\frac{2}{2}-\frac{1}{2}+\frac{1}{\sqrt{8}}y\right)+2y\times \frac{1}{18}=1
Convert 1 to fraction \frac{2}{2}.
\frac{1}{2}\left(\frac{2-1}{2}+\frac{1}{\sqrt{8}}y\right)+2y\times \frac{1}{18}=1
Since \frac{2}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{2}\left(\frac{1}{2}+\frac{1}{\sqrt{8}}y\right)+2y\times \frac{1}{18}=1
Subtract 1 from 2 to get 1.
\frac{1}{2}\left(\frac{1}{2}+\frac{1}{2\sqrt{2}}y\right)+2y\times \frac{1}{18}=1
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{1}{2}\left(\frac{1}{2}+\frac{\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}y\right)+2y\times \frac{1}{18}=1
Rationalize the denominator of \frac{1}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{1}{2}\left(\frac{1}{2}+\frac{\sqrt{2}}{2\times 2}y\right)+2y\times \frac{1}{18}=1
The square of \sqrt{2} is 2.
\frac{1}{2}\left(\frac{1}{2}+\frac{\sqrt{2}}{4}y\right)+2y\times \frac{1}{18}=1
Multiply 2 and 2 to get 4.
\frac{1}{2}\left(\frac{1}{2}+\frac{\sqrt{2}y}{4}\right)+2y\times \frac{1}{18}=1
Express \frac{\sqrt{2}}{4}y as a single fraction.
\frac{1}{2}\left(\frac{2}{4}+\frac{\sqrt{2}y}{4}\right)+2y\times \frac{1}{18}=1
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 4 is 4. Multiply \frac{1}{2} times \frac{2}{2}.
\frac{1}{2}\times \frac{2+\sqrt{2}y}{4}+2y\times \frac{1}{18}=1
Since \frac{2}{4} and \frac{\sqrt{2}y}{4} have the same denominator, add them by adding their numerators.
\frac{2+\sqrt{2}y}{2\times 4}+2y\times \frac{1}{18}=1
Multiply \frac{1}{2} times \frac{2+\sqrt{2}y}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{2+\sqrt{2}y}{2\times 4}+\frac{2}{18}y=1
Multiply 2 and \frac{1}{18} to get \frac{2}{18}.
\frac{2+\sqrt{2}y}{2\times 4}+\frac{1}{9}y=1
Reduce the fraction \frac{2}{18} to lowest terms by extracting and canceling out 2.
\frac{2+\sqrt{2}y}{8}+\frac{1}{9}y=1
Multiply 2 and 4 to get 8.
9\left(2+\sqrt{2}y\right)+8y=72
Multiply both sides of the equation by 72, the least common multiple of 8,9.
18+9\sqrt{2}y+8y=72
Use the distributive property to multiply 9 by 2+\sqrt{2}y.
9\sqrt{2}y+8y=72-18
Subtract 18 from both sides.
9\sqrt{2}y+8y=54
Subtract 18 from 72 to get 54.
\left(9\sqrt{2}+8\right)y=54
Combine all terms containing y.
\frac{\left(9\sqrt{2}+8\right)y}{9\sqrt{2}+8}=\frac{54}{9\sqrt{2}+8}
Divide both sides by 9\sqrt{2}+8.
y=\frac{54}{9\sqrt{2}+8}
Dividing by 9\sqrt{2}+8 undoes the multiplication by 9\sqrt{2}+8.
y=\frac{243\sqrt{2}-216}{49}
Divide 54 by 9\sqrt{2}+8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}