Solve for h
h=\sqrt{5}+1\approx 3.236067977
Share
Copied to clipboard
\left(\frac{1}{2}\sqrt{5}+\frac{1}{2}\left(-1\right)\right)h=2
Use the distributive property to multiply \frac{1}{2} by \sqrt{5}-1.
\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)h=2
Multiply \frac{1}{2} and -1 to get -\frac{1}{2}.
\frac{\sqrt{5}-1}{2}h=2
The equation is in standard form.
\frac{2\times \frac{\sqrt{5}-1}{2}h}{\sqrt{5}-1}=\frac{2\times 2}{\sqrt{5}-1}
Divide both sides by \frac{1}{2}\sqrt{5}-\frac{1}{2}.
h=\frac{2\times 2}{\sqrt{5}-1}
Dividing by \frac{1}{2}\sqrt{5}-\frac{1}{2} undoes the multiplication by \frac{1}{2}\sqrt{5}-\frac{1}{2}.
h=\sqrt{5}+1
Divide 2 by \frac{1}{2}\sqrt{5}-\frac{1}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}