Solve for x
x = \frac{2387520}{113} = 21128\frac{56}{113} \approx 21128.495575221
Graph
Share
Copied to clipboard
\frac{1}{2}\times \frac{16}{5}\times 1.8^{2}\times 82.9\times 10=0.9\times 0.226x
Convert decimal number 3.2 to fraction \frac{32}{10}. Reduce the fraction \frac{32}{10} to lowest terms by extracting and canceling out 2.
\frac{1\times 16}{2\times 5}\times 1.8^{2}\times 82.9\times 10=0.9\times 0.226x
Multiply \frac{1}{2} times \frac{16}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{16}{10}\times 1.8^{2}\times 82.9\times 10=0.9\times 0.226x
Do the multiplications in the fraction \frac{1\times 16}{2\times 5}.
\frac{8}{5}\times 1.8^{2}\times 82.9\times 10=0.9\times 0.226x
Reduce the fraction \frac{16}{10} to lowest terms by extracting and canceling out 2.
\frac{8}{5}\times 3.24\times 82.9\times 10=0.9\times 0.226x
Calculate 1.8 to the power of 2 and get 3.24.
\frac{8}{5}\times \frac{81}{25}\times 82.9\times 10=0.9\times 0.226x
Convert decimal number 3.24 to fraction \frac{324}{100}. Reduce the fraction \frac{324}{100} to lowest terms by extracting and canceling out 4.
\frac{8\times 81}{5\times 25}\times 82.9\times 10=0.9\times 0.226x
Multiply \frac{8}{5} times \frac{81}{25} by multiplying numerator times numerator and denominator times denominator.
\frac{648}{125}\times 82.9\times 10=0.9\times 0.226x
Do the multiplications in the fraction \frac{8\times 81}{5\times 25}.
\frac{648}{125}\times \frac{829}{10}\times 10=0.9\times 0.226x
Convert decimal number 82.9 to fraction \frac{829}{10}.
\frac{648\times 829}{125\times 10}\times 10=0.9\times 0.226x
Multiply \frac{648}{125} times \frac{829}{10} by multiplying numerator times numerator and denominator times denominator.
\frac{537192}{1250}\times 10=0.9\times 0.226x
Do the multiplications in the fraction \frac{648\times 829}{125\times 10}.
\frac{268596}{625}\times 10=0.9\times 0.226x
Reduce the fraction \frac{537192}{1250} to lowest terms by extracting and canceling out 2.
\frac{268596\times 10}{625}=0.9\times 0.226x
Express \frac{268596}{625}\times 10 as a single fraction.
\frac{2685960}{625}=0.9\times 0.226x
Multiply 268596 and 10 to get 2685960.
\frac{537192}{125}=0.9\times 0.226x
Reduce the fraction \frac{2685960}{625} to lowest terms by extracting and canceling out 5.
\frac{537192}{125}=0.2034x
Multiply 0.9 and 0.226 to get 0.2034.
0.2034x=\frac{537192}{125}
Swap sides so that all variable terms are on the left hand side.
x=\frac{\frac{537192}{125}}{0.2034}
Divide both sides by 0.2034.
x=\frac{537192}{125\times 0.2034}
Express \frac{\frac{537192}{125}}{0.2034} as a single fraction.
x=\frac{537192}{25.425}
Multiply 125 and 0.2034 to get 25.425.
x=\frac{537192000}{25425}
Expand \frac{537192}{25.425} by multiplying both numerator and the denominator by 1000.
x=\frac{2387520}{113}
Reduce the fraction \frac{537192000}{25425} to lowest terms by extracting and canceling out 225.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}