Evaluate
13.8975
Factor
\frac{3 \cdot 17 \cdot 109}{2 ^ {4} \cdot 5 ^ {2}} = 13\frac{359}{400} = 13.8975
Share
Copied to clipboard
\frac{1}{2}\left(0.21\times 0.84+0.5\times 0.235\times 0.47\right)\times 120
Multiply 0.5 and 0.42 to get 0.21.
\frac{1}{2}\left(0.1764+0.5\times 0.235\times 0.47\right)\times 120
Multiply 0.21 and 0.84 to get 0.1764.
\frac{1}{2}\left(0.1764+0.1175\times 0.47\right)\times 120
Multiply 0.5 and 0.235 to get 0.1175.
\frac{1}{2}\left(0.1764+0.055225\right)\times 120
Multiply 0.1175 and 0.47 to get 0.055225.
\frac{1}{2}\times 0.231625\times 120
Add 0.1764 and 0.055225 to get 0.231625.
\frac{1}{2}\times \frac{1853}{8000}\times 120
Convert decimal number 0.231625 to fraction \frac{231625}{1000000}. Reduce the fraction \frac{231625}{1000000} to lowest terms by extracting and canceling out 125.
\frac{1\times 1853}{2\times 8000}\times 120
Multiply \frac{1}{2} times \frac{1853}{8000} by multiplying numerator times numerator and denominator times denominator.
\frac{1853}{16000}\times 120
Do the multiplications in the fraction \frac{1\times 1853}{2\times 8000}.
\frac{1853\times 120}{16000}
Express \frac{1853}{16000}\times 120 as a single fraction.
\frac{222360}{16000}
Multiply 1853 and 120 to get 222360.
\frac{5559}{400}
Reduce the fraction \frac{222360}{16000} to lowest terms by extracting and canceling out 40.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}