Solve for a
a\neq 0
k=-3
Solve for k
k=-3
a\neq 0
Share
Copied to clipboard
\frac{1}{2}\times 2k\left(-a\right)=3a
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2a, the least common multiple of 2,a.
k\left(-a\right)=3a
Multiply \frac{1}{2} and 2 to get 1.
k\left(-a\right)-3a=0
Subtract 3a from both sides.
-ak-3a=0
Reorder the terms.
\left(-k-3\right)a=0
Combine all terms containing a.
a=0
Divide 0 by -3-k.
a\in \emptyset
Variable a cannot be equal to 0.
\frac{1}{2}\times 2k\left(-a\right)=3a
Multiply both sides of the equation by 2a, the least common multiple of 2,a.
k\left(-a\right)=3a
Multiply \frac{1}{2} and 2 to get 1.
-ak=3a
Reorder the terms.
\left(-a\right)k=3a
The equation is in standard form.
\frac{\left(-a\right)k}{-a}=\frac{3a}{-a}
Divide both sides by -a.
k=\frac{3a}{-a}
Dividing by -a undoes the multiplication by -a.
k=-3
Divide 3a by -a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}