Solve for p
p = \frac{25 \sqrt{6} {(2 \sqrt{3} - 1)}}{11} \approx 13.717708253
Share
Copied to clipboard
\frac{1}{2}\times \frac{2p\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+2p=\frac{50}{\sqrt{2}}
Rationalize the denominator of \frac{2p}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{1}{2}\times \frac{2p\sqrt{3}}{3}+2p=\frac{50}{\sqrt{2}}
The square of \sqrt{3} is 3.
\frac{2p\sqrt{3}}{2\times 3}+2p=\frac{50}{\sqrt{2}}
Multiply \frac{1}{2} times \frac{2p\sqrt{3}}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\sqrt{3}p}{3}+2p=\frac{50}{\sqrt{2}}
Cancel out 2 in both numerator and denominator.
\frac{\sqrt{3}p}{3}+2p=\frac{50\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{50}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\sqrt{3}p}{3}+2p=\frac{50\sqrt{2}}{2}
The square of \sqrt{2} is 2.
\frac{\sqrt{3}p}{3}+2p=25\sqrt{2}
Divide 50\sqrt{2} by 2 to get 25\sqrt{2}.
\sqrt{3}p+6p=75\sqrt{2}
Multiply both sides of the equation by 3.
\left(\sqrt{3}+6\right)p=75\sqrt{2}
Combine all terms containing p.
\frac{\left(\sqrt{3}+6\right)p}{\sqrt{3}+6}=\frac{75\sqrt{2}}{\sqrt{3}+6}
Divide both sides by \sqrt{3}+6.
p=\frac{75\sqrt{2}}{\sqrt{3}+6}
Dividing by \sqrt{3}+6 undoes the multiplication by \sqrt{3}+6.
p=-\frac{25\sqrt{2}\left(\sqrt{3}-6\right)}{11}
Divide 75\sqrt{2} by \sqrt{3}+6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}