Skip to main content
Solve for p
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{2}\times \frac{2p\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+2p=\frac{50}{\sqrt{2}}
Rationalize the denominator of \frac{2p}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{1}{2}\times \frac{2p\sqrt{3}}{3}+2p=\frac{50}{\sqrt{2}}
The square of \sqrt{3} is 3.
\frac{2p\sqrt{3}}{2\times 3}+2p=\frac{50}{\sqrt{2}}
Multiply \frac{1}{2} times \frac{2p\sqrt{3}}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\sqrt{3}p}{3}+2p=\frac{50}{\sqrt{2}}
Cancel out 2 in both numerator and denominator.
\frac{\sqrt{3}p}{3}+2p=\frac{50\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{50}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\sqrt{3}p}{3}+2p=\frac{50\sqrt{2}}{2}
The square of \sqrt{2} is 2.
\frac{\sqrt{3}p}{3}+2p=25\sqrt{2}
Divide 50\sqrt{2} by 2 to get 25\sqrt{2}.
\sqrt{3}p+6p=75\sqrt{2}
Multiply both sides of the equation by 3.
\left(\sqrt{3}+6\right)p=75\sqrt{2}
Combine all terms containing p.
\frac{\left(\sqrt{3}+6\right)p}{\sqrt{3}+6}=\frac{75\sqrt{2}}{\sqrt{3}+6}
Divide both sides by \sqrt{3}+6.
p=\frac{75\sqrt{2}}{\sqrt{3}+6}
Dividing by \sqrt{3}+6 undoes the multiplication by \sqrt{3}+6.
p=-\frac{25\sqrt{2}\left(\sqrt{3}-6\right)}{11}
Divide 75\sqrt{2} by \sqrt{3}+6.