Evaluate
\frac{4}{3}\approx 1.333333333
Factor
\frac{2 ^ {2}}{3} = 1\frac{1}{3} = 1.3333333333333333
Share
Copied to clipboard
\frac{1}{2}\times \frac{16}{3}-\frac{1}{6}\times 3-\frac{5}{6}
Divide \frac{1}{2} by \frac{3}{16} by multiplying \frac{1}{2} by the reciprocal of \frac{3}{16}.
\frac{1\times 16}{2\times 3}-\frac{1}{6}\times 3-\frac{5}{6}
Multiply \frac{1}{2} times \frac{16}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{16}{6}-\frac{1}{6}\times 3-\frac{5}{6}
Do the multiplications in the fraction \frac{1\times 16}{2\times 3}.
\frac{8}{3}-\frac{1}{6}\times 3-\frac{5}{6}
Reduce the fraction \frac{16}{6} to lowest terms by extracting and canceling out 2.
\frac{8}{3}-\frac{3}{6}-\frac{5}{6}
Multiply \frac{1}{6} and 3 to get \frac{3}{6}.
\frac{8}{3}-\frac{1}{2}-\frac{5}{6}
Reduce the fraction \frac{3}{6} to lowest terms by extracting and canceling out 3.
\frac{16}{6}-\frac{3}{6}-\frac{5}{6}
Least common multiple of 3 and 2 is 6. Convert \frac{8}{3} and \frac{1}{2} to fractions with denominator 6.
\frac{16-3}{6}-\frac{5}{6}
Since \frac{16}{6} and \frac{3}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{13}{6}-\frac{5}{6}
Subtract 3 from 16 to get 13.
\frac{13-5}{6}
Since \frac{13}{6} and \frac{5}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{8}{6}
Subtract 5 from 13 to get 8.
\frac{4}{3}
Reduce the fraction \frac{8}{6} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}