Solve for x_f
x_{f}=\frac{\sqrt{6}}{50}\approx 0.048989795
x_{f}=-\frac{\sqrt{6}}{50}\approx -0.048989795
Share
Copied to clipboard
\frac{1}{2}\times \frac{8000}{2}\left(-x_{f}^{2}+0.02^{2}\right)+4=0
Expand \frac{80}{0.02} by multiplying both numerator and the denominator by 100.
\frac{1}{2}\times 4000\left(-x_{f}^{2}+0.02^{2}\right)+4=0
Divide 8000 by 2 to get 4000.
2000\left(-x_{f}^{2}+0.02^{2}\right)+4=0
Multiply \frac{1}{2} and 4000 to get 2000.
2000\left(-x_{f}^{2}+0.0004\right)+4=0
Calculate 0.02 to the power of 2 and get 0.0004.
2000\left(-x_{f}^{2}\right)+0.8+4=0
Use the distributive property to multiply 2000 by -x_{f}^{2}+0.0004.
2000\left(-x_{f}^{2}\right)+4.8=0
Add 0.8 and 4 to get 4.8.
2000\left(-x_{f}^{2}\right)=-4.8
Subtract 4.8 from both sides. Anything subtracted from zero gives its negation.
-x_{f}^{2}=\frac{-4.8}{2000}
Divide both sides by 2000.
-x_{f}^{2}=\frac{-48}{20000}
Expand \frac{-4.8}{2000} by multiplying both numerator and the denominator by 10.
-x_{f}^{2}=-\frac{3}{1250}
Reduce the fraction \frac{-48}{20000} to lowest terms by extracting and canceling out 16.
x_{f}^{2}=\frac{-\frac{3}{1250}}{-1}
Divide both sides by -1.
x_{f}^{2}=\frac{-3}{1250\left(-1\right)}
Express \frac{-\frac{3}{1250}}{-1} as a single fraction.
x_{f}^{2}=\frac{-3}{-1250}
Multiply 1250 and -1 to get -1250.
x_{f}^{2}=\frac{3}{1250}
Fraction \frac{-3}{-1250} can be simplified to \frac{3}{1250} by removing the negative sign from both the numerator and the denominator.
x_{f}=\frac{\sqrt{6}}{50} x_{f}=-\frac{\sqrt{6}}{50}
Take the square root of both sides of the equation.
\frac{1}{2}\times \frac{8000}{2}\left(-x_{f}^{2}+0.02^{2}\right)+4=0
Expand \frac{80}{0.02} by multiplying both numerator and the denominator by 100.
\frac{1}{2}\times 4000\left(-x_{f}^{2}+0.02^{2}\right)+4=0
Divide 8000 by 2 to get 4000.
2000\left(-x_{f}^{2}+0.02^{2}\right)+4=0
Multiply \frac{1}{2} and 4000 to get 2000.
2000\left(-x_{f}^{2}+0.0004\right)+4=0
Calculate 0.02 to the power of 2 and get 0.0004.
2000\left(-x_{f}^{2}\right)+0.8+4=0
Use the distributive property to multiply 2000 by -x_{f}^{2}+0.0004.
2000\left(-x_{f}^{2}\right)+4.8=0
Add 0.8 and 4 to get 4.8.
-2000x_{f}^{2}+4.8=0
Multiply 2000 and -1 to get -2000.
x_{f}=\frac{0±\sqrt{0^{2}-4\left(-2000\right)\times 4.8}}{2\left(-2000\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2000 for a, 0 for b, and 4.8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x_{f}=\frac{0±\sqrt{-4\left(-2000\right)\times 4.8}}{2\left(-2000\right)}
Square 0.
x_{f}=\frac{0±\sqrt{8000\times 4.8}}{2\left(-2000\right)}
Multiply -4 times -2000.
x_{f}=\frac{0±\sqrt{38400}}{2\left(-2000\right)}
Multiply 8000 times 4.8.
x_{f}=\frac{0±80\sqrt{6}}{2\left(-2000\right)}
Take the square root of 38400.
x_{f}=\frac{0±80\sqrt{6}}{-4000}
Multiply 2 times -2000.
x_{f}=-\frac{\sqrt{6}}{50}
Now solve the equation x_{f}=\frac{0±80\sqrt{6}}{-4000} when ± is plus.
x_{f}=\frac{\sqrt{6}}{50}
Now solve the equation x_{f}=\frac{0±80\sqrt{6}}{-4000} when ± is minus.
x_{f}=-\frac{\sqrt{6}}{50} x_{f}=\frac{\sqrt{6}}{50}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}