Solve for x
x=-3
Graph
Quiz
Linear Equation
\frac { 1 } { 2 } [ x + \frac { 1 } { 3 } ( 2 - x ) ] = \frac { 2 } { 3 } ( x + 2 )
Share
Copied to clipboard
\frac{1}{2}\left(x+\frac{1}{3}\times 2+\frac{1}{3}\left(-1\right)x\right)=\frac{2}{3}\left(x+2\right)
Use the distributive property to multiply \frac{1}{3} by 2-x.
\frac{1}{2}\left(x+\frac{2}{3}+\frac{1}{3}\left(-1\right)x\right)=\frac{2}{3}\left(x+2\right)
Multiply \frac{1}{3} and 2 to get \frac{2}{3}.
\frac{1}{2}\left(x+\frac{2}{3}-\frac{1}{3}x\right)=\frac{2}{3}\left(x+2\right)
Multiply \frac{1}{3} and -1 to get -\frac{1}{3}.
\frac{1}{2}\left(\frac{2}{3}x+\frac{2}{3}\right)=\frac{2}{3}\left(x+2\right)
Combine x and -\frac{1}{3}x to get \frac{2}{3}x.
\frac{1}{2}\times \frac{2}{3}x+\frac{1}{2}\times \frac{2}{3}=\frac{2}{3}\left(x+2\right)
Use the distributive property to multiply \frac{1}{2} by \frac{2}{3}x+\frac{2}{3}.
\frac{1\times 2}{2\times 3}x+\frac{1}{2}\times \frac{2}{3}=\frac{2}{3}\left(x+2\right)
Multiply \frac{1}{2} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{3}x+\frac{1}{2}\times \frac{2}{3}=\frac{2}{3}\left(x+2\right)
Cancel out 2 in both numerator and denominator.
\frac{1}{3}x+\frac{1\times 2}{2\times 3}=\frac{2}{3}\left(x+2\right)
Multiply \frac{1}{2} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{3}x+\frac{1}{3}=\frac{2}{3}\left(x+2\right)
Cancel out 2 in both numerator and denominator.
\frac{1}{3}x+\frac{1}{3}=\frac{2}{3}x+\frac{2}{3}\times 2
Use the distributive property to multiply \frac{2}{3} by x+2.
\frac{1}{3}x+\frac{1}{3}=\frac{2}{3}x+\frac{2\times 2}{3}
Express \frac{2}{3}\times 2 as a single fraction.
\frac{1}{3}x+\frac{1}{3}=\frac{2}{3}x+\frac{4}{3}
Multiply 2 and 2 to get 4.
\frac{1}{3}x+\frac{1}{3}-\frac{2}{3}x=\frac{4}{3}
Subtract \frac{2}{3}x from both sides.
-\frac{1}{3}x+\frac{1}{3}=\frac{4}{3}
Combine \frac{1}{3}x and -\frac{2}{3}x to get -\frac{1}{3}x.
-\frac{1}{3}x=\frac{4}{3}-\frac{1}{3}
Subtract \frac{1}{3} from both sides.
-\frac{1}{3}x=\frac{4-1}{3}
Since \frac{4}{3} and \frac{1}{3} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{3}x=\frac{3}{3}
Subtract 1 from 4 to get 3.
-\frac{1}{3}x=1
Divide 3 by 3 to get 1.
x=1\left(-3\right)
Multiply both sides by -3, the reciprocal of -\frac{1}{3}.
x=-3
Multiply 1 and -3 to get -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}