Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{2}\times 9999^{2}+\left(2014-2015\right)^{2}+\left(2015-2013\right)^{2}
Subtract 2014 from 12013 to get 9999.
\frac{1}{2}\times 99980001+\left(2014-2015\right)^{2}+\left(2015-2013\right)^{2}
Calculate 9999 to the power of 2 and get 99980001.
\frac{99980001}{2}+\left(2014-2015\right)^{2}+\left(2015-2013\right)^{2}
Multiply \frac{1}{2} and 99980001 to get \frac{99980001}{2}.
\frac{99980001}{2}+\left(-1\right)^{2}+\left(2015-2013\right)^{2}
Subtract 2015 from 2014 to get -1.
\frac{99980001}{2}+1+\left(2015-2013\right)^{2}
Calculate -1 to the power of 2 and get 1.
\frac{99980003}{2}+\left(2015-2013\right)^{2}
Add \frac{99980001}{2} and 1 to get \frac{99980003}{2}.
\frac{99980003}{2}+2^{2}
Subtract 2013 from 2015 to get 2.
\frac{99980003}{2}+4
Calculate 2 to the power of 2 and get 4.
\frac{99980011}{2}
Add \frac{99980003}{2} and 4 to get \frac{99980011}{2}.