Skip to main content
Solve for z
Tick mark Image

Similar Problems from Web Search

Share

6\left(1+\frac{1}{4}\left(3z-1\right)\right)=4\times 2z-6
Multiply both sides of the equation by 12, the least common multiple of 2,4,3.
6\left(1+\frac{1}{4}\times 3z+\frac{1}{4}\left(-1\right)\right)=4\times 2z-6
Use the distributive property to multiply \frac{1}{4} by 3z-1.
6\left(1+\frac{3}{4}z+\frac{1}{4}\left(-1\right)\right)=4\times 2z-6
Multiply \frac{1}{4} and 3 to get \frac{3}{4}.
6\left(1+\frac{3}{4}z-\frac{1}{4}\right)=4\times 2z-6
Multiply \frac{1}{4} and -1 to get -\frac{1}{4}.
6\left(\frac{4}{4}+\frac{3}{4}z-\frac{1}{4}\right)=4\times 2z-6
Convert 1 to fraction \frac{4}{4}.
6\left(\frac{4-1}{4}+\frac{3}{4}z\right)=4\times 2z-6
Since \frac{4}{4} and \frac{1}{4} have the same denominator, subtract them by subtracting their numerators.
6\left(\frac{3}{4}+\frac{3}{4}z\right)=4\times 2z-6
Subtract 1 from 4 to get 3.
6\times \frac{3}{4}+6\times \frac{3}{4}z=4\times 2z-6
Use the distributive property to multiply 6 by \frac{3}{4}+\frac{3}{4}z.
\frac{6\times 3}{4}+6\times \frac{3}{4}z=4\times 2z-6
Express 6\times \frac{3}{4} as a single fraction.
\frac{18}{4}+6\times \frac{3}{4}z=4\times 2z-6
Multiply 6 and 3 to get 18.
\frac{9}{2}+6\times \frac{3}{4}z=4\times 2z-6
Reduce the fraction \frac{18}{4} to lowest terms by extracting and canceling out 2.
\frac{9}{2}+\frac{6\times 3}{4}z=4\times 2z-6
Express 6\times \frac{3}{4} as a single fraction.
\frac{9}{2}+\frac{18}{4}z=4\times 2z-6
Multiply 6 and 3 to get 18.
\frac{9}{2}+\frac{9}{2}z=4\times 2z-6
Reduce the fraction \frac{18}{4} to lowest terms by extracting and canceling out 2.
\frac{9}{2}+\frac{9}{2}z=8z-6
Multiply 4 and 2 to get 8.
\frac{9}{2}+\frac{9}{2}z-8z=-6
Subtract 8z from both sides.
\frac{9}{2}-\frac{7}{2}z=-6
Combine \frac{9}{2}z and -8z to get -\frac{7}{2}z.
-\frac{7}{2}z=-6-\frac{9}{2}
Subtract \frac{9}{2} from both sides.
-\frac{7}{2}z=-\frac{12}{2}-\frac{9}{2}
Convert -6 to fraction -\frac{12}{2}.
-\frac{7}{2}z=\frac{-12-9}{2}
Since -\frac{12}{2} and \frac{9}{2} have the same denominator, subtract them by subtracting their numerators.
-\frac{7}{2}z=-\frac{21}{2}
Subtract 9 from -12 to get -21.
z=-\frac{21}{2}\left(-\frac{2}{7}\right)
Multiply both sides by -\frac{2}{7}, the reciprocal of -\frac{7}{2}.
z=\frac{-21\left(-2\right)}{2\times 7}
Multiply -\frac{21}{2} times -\frac{2}{7} by multiplying numerator times numerator and denominator times denominator.
z=\frac{42}{14}
Do the multiplications in the fraction \frac{-21\left(-2\right)}{2\times 7}.
z=3
Divide 42 by 14 to get 3.