Evaluate
\frac{97}{200}=0.485
Factor
\frac{97}{2 ^ {3} \cdot 5 ^ {2}} = 0.485
Share
Copied to clipboard
\frac{1}{2}\left(\frac{9}{25}+\left(\frac{3}{5}\right)^{2}+\left(\frac{1}{2}\right)^{2}\right)
Calculate \frac{3}{5} to the power of 2 and get \frac{9}{25}.
\frac{1}{2}\left(\frac{9}{25}+\frac{9}{25}+\left(\frac{1}{2}\right)^{2}\right)
Calculate \frac{3}{5} to the power of 2 and get \frac{9}{25}.
\frac{1}{2}\left(\frac{9+9}{25}+\left(\frac{1}{2}\right)^{2}\right)
Since \frac{9}{25} and \frac{9}{25} have the same denominator, add them by adding their numerators.
\frac{1}{2}\left(\frac{18}{25}+\left(\frac{1}{2}\right)^{2}\right)
Add 9 and 9 to get 18.
\frac{1}{2}\left(\frac{18}{25}+\frac{1}{4}\right)
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{1}{2}\left(\frac{72}{100}+\frac{25}{100}\right)
Least common multiple of 25 and 4 is 100. Convert \frac{18}{25} and \frac{1}{4} to fractions with denominator 100.
\frac{1}{2}\times \frac{72+25}{100}
Since \frac{72}{100} and \frac{25}{100} have the same denominator, add them by adding their numerators.
\frac{1}{2}\times \frac{97}{100}
Add 72 and 25 to get 97.
\frac{1\times 97}{2\times 100}
Multiply \frac{1}{2} times \frac{97}{100} by multiplying numerator times numerator and denominator times denominator.
\frac{97}{200}
Do the multiplications in the fraction \frac{1\times 97}{2\times 100}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}