Evaluate
\frac{121}{50}=2.42
Factor
\frac{11 ^ {2}}{2 \cdot 5 ^ {2}} = 2\frac{21}{50} = 2.42
Share
Copied to clipboard
\frac{1}{2}\left(\left(\frac{16}{9}-\frac{4}{5}-\frac{7}{9}\right)\times \frac{12}{10}-\frac{44}{10}\right)+\left(7-\frac{\frac{42}{99}}{\frac{7}{99}}\right)\times \frac{5}{10}\times 3\times \frac{3}{1}
Reduce the fraction \frac{8}{10} to lowest terms by extracting and canceling out 2.
\frac{1}{2}\left(\left(\frac{80}{45}-\frac{36}{45}-\frac{7}{9}\right)\times \frac{12}{10}-\frac{44}{10}\right)+\left(7-\frac{\frac{42}{99}}{\frac{7}{99}}\right)\times \frac{5}{10}\times 3\times \frac{3}{1}
Least common multiple of 9 and 5 is 45. Convert \frac{16}{9} and \frac{4}{5} to fractions with denominator 45.
\frac{1}{2}\left(\left(\frac{80-36}{45}-\frac{7}{9}\right)\times \frac{12}{10}-\frac{44}{10}\right)+\left(7-\frac{\frac{42}{99}}{\frac{7}{99}}\right)\times \frac{5}{10}\times 3\times \frac{3}{1}
Since \frac{80}{45} and \frac{36}{45} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{2}\left(\left(\frac{44}{45}-\frac{7}{9}\right)\times \frac{12}{10}-\frac{44}{10}\right)+\left(7-\frac{\frac{42}{99}}{\frac{7}{99}}\right)\times \frac{5}{10}\times 3\times \frac{3}{1}
Subtract 36 from 80 to get 44.
\frac{1}{2}\left(\left(\frac{44}{45}-\frac{35}{45}\right)\times \frac{12}{10}-\frac{44}{10}\right)+\left(7-\frac{\frac{42}{99}}{\frac{7}{99}}\right)\times \frac{5}{10}\times 3\times \frac{3}{1}
Least common multiple of 45 and 9 is 45. Convert \frac{44}{45} and \frac{7}{9} to fractions with denominator 45.
\frac{1}{2}\left(\frac{44-35}{45}\times \frac{12}{10}-\frac{44}{10}\right)+\left(7-\frac{\frac{42}{99}}{\frac{7}{99}}\right)\times \frac{5}{10}\times 3\times \frac{3}{1}
Since \frac{44}{45} and \frac{35}{45} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{2}\left(\frac{9}{45}\times \frac{12}{10}-\frac{44}{10}\right)+\left(7-\frac{\frac{42}{99}}{\frac{7}{99}}\right)\times \frac{5}{10}\times 3\times \frac{3}{1}
Subtract 35 from 44 to get 9.
\frac{1}{2}\left(\frac{1}{5}\times \frac{12}{10}-\frac{44}{10}\right)+\left(7-\frac{\frac{42}{99}}{\frac{7}{99}}\right)\times \frac{5}{10}\times 3\times \frac{3}{1}
Reduce the fraction \frac{9}{45} to lowest terms by extracting and canceling out 9.
\frac{1}{2}\left(\frac{1}{5}\times \frac{6}{5}-\frac{44}{10}\right)+\left(7-\frac{\frac{42}{99}}{\frac{7}{99}}\right)\times \frac{5}{10}\times 3\times \frac{3}{1}
Reduce the fraction \frac{12}{10} to lowest terms by extracting and canceling out 2.
\frac{1}{2}\left(\frac{1\times 6}{5\times 5}-\frac{44}{10}\right)+\left(7-\frac{\frac{42}{99}}{\frac{7}{99}}\right)\times \frac{5}{10}\times 3\times \frac{3}{1}
Multiply \frac{1}{5} times \frac{6}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{2}\left(\frac{6}{25}-\frac{44}{10}\right)+\left(7-\frac{\frac{42}{99}}{\frac{7}{99}}\right)\times \frac{5}{10}\times 3\times \frac{3}{1}
Do the multiplications in the fraction \frac{1\times 6}{5\times 5}.
\frac{1}{2}\left(\frac{6}{25}-\frac{22}{5}\right)+\left(7-\frac{\frac{42}{99}}{\frac{7}{99}}\right)\times \frac{5}{10}\times 3\times \frac{3}{1}
Reduce the fraction \frac{44}{10} to lowest terms by extracting and canceling out 2.
\frac{1}{2}\left(\frac{6}{25}-\frac{110}{25}\right)+\left(7-\frac{\frac{42}{99}}{\frac{7}{99}}\right)\times \frac{5}{10}\times 3\times \frac{3}{1}
Least common multiple of 25 and 5 is 25. Convert \frac{6}{25} and \frac{22}{5} to fractions with denominator 25.
\frac{1}{2}\times \frac{6-110}{25}+\left(7-\frac{\frac{42}{99}}{\frac{7}{99}}\right)\times \frac{5}{10}\times 3\times \frac{3}{1}
Since \frac{6}{25} and \frac{110}{25} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{2}\left(-\frac{104}{25}\right)+\left(7-\frac{\frac{42}{99}}{\frac{7}{99}}\right)\times \frac{5}{10}\times 3\times \frac{3}{1}
Subtract 110 from 6 to get -104.
\frac{1\left(-104\right)}{2\times 25}+\left(7-\frac{\frac{42}{99}}{\frac{7}{99}}\right)\times \frac{5}{10}\times 3\times \frac{3}{1}
Multiply \frac{1}{2} times -\frac{104}{25} by multiplying numerator times numerator and denominator times denominator.
\frac{-104}{50}+\left(7-\frac{\frac{42}{99}}{\frac{7}{99}}\right)\times \frac{5}{10}\times 3\times \frac{3}{1}
Do the multiplications in the fraction \frac{1\left(-104\right)}{2\times 25}.
-\frac{52}{25}+\left(7-\frac{\frac{42}{99}}{\frac{7}{99}}\right)\times \frac{5}{10}\times 3\times \frac{3}{1}
Reduce the fraction \frac{-104}{50} to lowest terms by extracting and canceling out 2.
-\frac{52}{25}+\left(7-\frac{42\times 99}{99\times 7}\right)\times \frac{5}{10}\times 3\times \frac{3}{1}
Divide \frac{42}{99} by \frac{7}{99} by multiplying \frac{42}{99} by the reciprocal of \frac{7}{99}.
-\frac{52}{25}+\left(7-2\times 3\right)\times \frac{5}{10}\times 3\times \frac{3}{1}
Cancel out 3\times 7\times 33 in both numerator and denominator.
-\frac{52}{25}+\left(7-6\right)\times \frac{5}{10}\times 3\times \frac{3}{1}
Multiply 2 and 3 to get 6.
-\frac{52}{25}+1\times \frac{5}{10}\times 3\times \frac{3}{1}
Subtract 6 from 7 to get 1.
-\frac{52}{25}+1\times \frac{1}{2}\times 3\times \frac{3}{1}
Reduce the fraction \frac{5}{10} to lowest terms by extracting and canceling out 5.
-\frac{52}{25}+\frac{1}{2}\times 3\times \frac{3}{1}
Multiply 1 and \frac{1}{2} to get \frac{1}{2}.
-\frac{52}{25}+\frac{3}{2}\times \frac{3}{1}
Multiply \frac{1}{2} and 3 to get \frac{3}{2}.
-\frac{52}{25}+\frac{3}{2}\times 3
Anything divided by one gives itself.
-\frac{52}{25}+\frac{3\times 3}{2}
Express \frac{3}{2}\times 3 as a single fraction.
-\frac{52}{25}+\frac{9}{2}
Multiply 3 and 3 to get 9.
-\frac{104}{50}+\frac{225}{50}
Least common multiple of 25 and 2 is 50. Convert -\frac{52}{25} and \frac{9}{2} to fractions with denominator 50.
\frac{-104+225}{50}
Since -\frac{104}{50} and \frac{225}{50} have the same denominator, add them by adding their numerators.
\frac{121}{50}
Add -104 and 225 to get 121.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}