Solve for y
y=-\frac{\sqrt{290}i}{6}\approx -0-2.838231061i
y=\frac{\sqrt{290}i}{6}\approx 2.838231061i
Share
Copied to clipboard
5=2\times 9y^{2}+150
Multiply both sides of the equation by 10, the least common multiple of 2,5.
5=18y^{2}+150
Multiply 2 and 9 to get 18.
18y^{2}+150=5
Swap sides so that all variable terms are on the left hand side.
18y^{2}=5-150
Subtract 150 from both sides.
18y^{2}=-145
Subtract 150 from 5 to get -145.
y^{2}=-\frac{145}{18}
Divide both sides by 18.
y=\frac{\sqrt{290}i}{6} y=-\frac{\sqrt{290}i}{6}
The equation is now solved.
5=2\times 9y^{2}+150
Multiply both sides of the equation by 10, the least common multiple of 2,5.
5=18y^{2}+150
Multiply 2 and 9 to get 18.
18y^{2}+150=5
Swap sides so that all variable terms are on the left hand side.
18y^{2}+150-5=0
Subtract 5 from both sides.
18y^{2}+145=0
Subtract 5 from 150 to get 145.
y=\frac{0±\sqrt{0^{2}-4\times 18\times 145}}{2\times 18}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 18 for a, 0 for b, and 145 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\times 18\times 145}}{2\times 18}
Square 0.
y=\frac{0±\sqrt{-72\times 145}}{2\times 18}
Multiply -4 times 18.
y=\frac{0±\sqrt{-10440}}{2\times 18}
Multiply -72 times 145.
y=\frac{0±6\sqrt{290}i}{2\times 18}
Take the square root of -10440.
y=\frac{0±6\sqrt{290}i}{36}
Multiply 2 times 18.
y=\frac{\sqrt{290}i}{6}
Now solve the equation y=\frac{0±6\sqrt{290}i}{36} when ± is plus.
y=-\frac{\sqrt{290}i}{6}
Now solve the equation y=\frac{0±6\sqrt{290}i}{36} when ± is minus.
y=\frac{\sqrt{290}i}{6} y=-\frac{\sqrt{290}i}{6}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}