Evaluate
-\frac{587}{252}\approx -2.329365079
Factor
-\frac{587}{252} = -2\frac{83}{252} = -2.3293650793650795
Share
Copied to clipboard
\frac{3}{6}+\frac{4}{6}-\frac{3}{5}+\frac{1}{7}-\frac{2}{5}-\frac{8}{9}-\frac{7}{4}
Least common multiple of 2 and 3 is 6. Convert \frac{1}{2} and \frac{2}{3} to fractions with denominator 6.
\frac{3+4}{6}-\frac{3}{5}+\frac{1}{7}-\frac{2}{5}-\frac{8}{9}-\frac{7}{4}
Since \frac{3}{6} and \frac{4}{6} have the same denominator, add them by adding their numerators.
\frac{7}{6}-\frac{3}{5}+\frac{1}{7}-\frac{2}{5}-\frac{8}{9}-\frac{7}{4}
Add 3 and 4 to get 7.
\frac{35}{30}-\frac{18}{30}+\frac{1}{7}-\frac{2}{5}-\frac{8}{9}-\frac{7}{4}
Least common multiple of 6 and 5 is 30. Convert \frac{7}{6} and \frac{3}{5} to fractions with denominator 30.
\frac{35-18}{30}+\frac{1}{7}-\frac{2}{5}-\frac{8}{9}-\frac{7}{4}
Since \frac{35}{30} and \frac{18}{30} have the same denominator, subtract them by subtracting their numerators.
\frac{17}{30}+\frac{1}{7}-\frac{2}{5}-\frac{8}{9}-\frac{7}{4}
Subtract 18 from 35 to get 17.
\frac{119}{210}+\frac{30}{210}-\frac{2}{5}-\frac{8}{9}-\frac{7}{4}
Least common multiple of 30 and 7 is 210. Convert \frac{17}{30} and \frac{1}{7} to fractions with denominator 210.
\frac{119+30}{210}-\frac{2}{5}-\frac{8}{9}-\frac{7}{4}
Since \frac{119}{210} and \frac{30}{210} have the same denominator, add them by adding their numerators.
\frac{149}{210}-\frac{2}{5}-\frac{8}{9}-\frac{7}{4}
Add 119 and 30 to get 149.
\frac{149}{210}-\frac{84}{210}-\frac{8}{9}-\frac{7}{4}
Least common multiple of 210 and 5 is 210. Convert \frac{149}{210} and \frac{2}{5} to fractions with denominator 210.
\frac{149-84}{210}-\frac{8}{9}-\frac{7}{4}
Since \frac{149}{210} and \frac{84}{210} have the same denominator, subtract them by subtracting their numerators.
\frac{65}{210}-\frac{8}{9}-\frac{7}{4}
Subtract 84 from 149 to get 65.
\frac{13}{42}-\frac{8}{9}-\frac{7}{4}
Reduce the fraction \frac{65}{210} to lowest terms by extracting and canceling out 5.
\frac{39}{126}-\frac{112}{126}-\frac{7}{4}
Least common multiple of 42 and 9 is 126. Convert \frac{13}{42} and \frac{8}{9} to fractions with denominator 126.
\frac{39-112}{126}-\frac{7}{4}
Since \frac{39}{126} and \frac{112}{126} have the same denominator, subtract them by subtracting their numerators.
-\frac{73}{126}-\frac{7}{4}
Subtract 112 from 39 to get -73.
-\frac{146}{252}-\frac{441}{252}
Least common multiple of 126 and 4 is 252. Convert -\frac{73}{126} and \frac{7}{4} to fractions with denominator 252.
\frac{-146-441}{252}
Since -\frac{146}{252} and \frac{441}{252} have the same denominator, subtract them by subtracting their numerators.
-\frac{587}{252}
Subtract 441 from -146 to get -587.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}