Evaluate
\frac{3095}{5991}\approx 0.516608246
Factor
\frac{5 \cdot 619}{3 \cdot 1997} = 0.5166082457018861
Share
Copied to clipboard
\frac{1}{2}+\frac{199}{6\times 1997}
Express \frac{\frac{199}{6}}{1997} as a single fraction.
\frac{1}{2}+\frac{199}{11982}
Multiply 6 and 1997 to get 11982.
\frac{5991}{11982}+\frac{199}{11982}
Least common multiple of 2 and 11982 is 11982. Convert \frac{1}{2} and \frac{199}{11982} to fractions with denominator 11982.
\frac{5991+199}{11982}
Since \frac{5991}{11982} and \frac{199}{11982} have the same denominator, add them by adding their numerators.
\frac{6190}{11982}
Add 5991 and 199 to get 6190.
\frac{3095}{5991}
Reduce the fraction \frac{6190}{11982} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}