Evaluate
\frac{19}{20}=0.95
Factor
\frac{19}{2 ^ {2} \cdot 5} = 0.95
Share
Copied to clipboard
\frac{3}{6}+\frac{1}{6}+\frac{2}{15}+\frac{2}{35}+\frac{3}{70}+\frac{2}{120}+\frac{3}{180}+\frac{5}{300}
Least common multiple of 2 and 6 is 6. Convert \frac{1}{2} and \frac{1}{6} to fractions with denominator 6.
\frac{3+1}{6}+\frac{2}{15}+\frac{2}{35}+\frac{3}{70}+\frac{2}{120}+\frac{3}{180}+\frac{5}{300}
Since \frac{3}{6} and \frac{1}{6} have the same denominator, add them by adding their numerators.
\frac{4}{6}+\frac{2}{15}+\frac{2}{35}+\frac{3}{70}+\frac{2}{120}+\frac{3}{180}+\frac{5}{300}
Add 3 and 1 to get 4.
\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{3}{70}+\frac{2}{120}+\frac{3}{180}+\frac{5}{300}
Reduce the fraction \frac{4}{6} to lowest terms by extracting and canceling out 2.
\frac{10}{15}+\frac{2}{15}+\frac{2}{35}+\frac{3}{70}+\frac{2}{120}+\frac{3}{180}+\frac{5}{300}
Least common multiple of 3 and 15 is 15. Convert \frac{2}{3} and \frac{2}{15} to fractions with denominator 15.
\frac{10+2}{15}+\frac{2}{35}+\frac{3}{70}+\frac{2}{120}+\frac{3}{180}+\frac{5}{300}
Since \frac{10}{15} and \frac{2}{15} have the same denominator, add them by adding their numerators.
\frac{12}{15}+\frac{2}{35}+\frac{3}{70}+\frac{2}{120}+\frac{3}{180}+\frac{5}{300}
Add 10 and 2 to get 12.
\frac{4}{5}+\frac{2}{35}+\frac{3}{70}+\frac{2}{120}+\frac{3}{180}+\frac{5}{300}
Reduce the fraction \frac{12}{15} to lowest terms by extracting and canceling out 3.
\frac{28}{35}+\frac{2}{35}+\frac{3}{70}+\frac{2}{120}+\frac{3}{180}+\frac{5}{300}
Least common multiple of 5 and 35 is 35. Convert \frac{4}{5} and \frac{2}{35} to fractions with denominator 35.
\frac{28+2}{35}+\frac{3}{70}+\frac{2}{120}+\frac{3}{180}+\frac{5}{300}
Since \frac{28}{35} and \frac{2}{35} have the same denominator, add them by adding their numerators.
\frac{30}{35}+\frac{3}{70}+\frac{2}{120}+\frac{3}{180}+\frac{5}{300}
Add 28 and 2 to get 30.
\frac{6}{7}+\frac{3}{70}+\frac{2}{120}+\frac{3}{180}+\frac{5}{300}
Reduce the fraction \frac{30}{35} to lowest terms by extracting and canceling out 5.
\frac{60}{70}+\frac{3}{70}+\frac{2}{120}+\frac{3}{180}+\frac{5}{300}
Least common multiple of 7 and 70 is 70. Convert \frac{6}{7} and \frac{3}{70} to fractions with denominator 70.
\frac{60+3}{70}+\frac{2}{120}+\frac{3}{180}+\frac{5}{300}
Since \frac{60}{70} and \frac{3}{70} have the same denominator, add them by adding their numerators.
\frac{63}{70}+\frac{2}{120}+\frac{3}{180}+\frac{5}{300}
Add 60 and 3 to get 63.
\frac{9}{10}+\frac{2}{120}+\frac{3}{180}+\frac{5}{300}
Reduce the fraction \frac{63}{70} to lowest terms by extracting and canceling out 7.
\frac{9}{10}+\frac{1}{60}+\frac{3}{180}+\frac{5}{300}
Reduce the fraction \frac{2}{120} to lowest terms by extracting and canceling out 2.
\frac{54}{60}+\frac{1}{60}+\frac{3}{180}+\frac{5}{300}
Least common multiple of 10 and 60 is 60. Convert \frac{9}{10} and \frac{1}{60} to fractions with denominator 60.
\frac{54+1}{60}+\frac{3}{180}+\frac{5}{300}
Since \frac{54}{60} and \frac{1}{60} have the same denominator, add them by adding their numerators.
\frac{55}{60}+\frac{3}{180}+\frac{5}{300}
Add 54 and 1 to get 55.
\frac{11}{12}+\frac{3}{180}+\frac{5}{300}
Reduce the fraction \frac{55}{60} to lowest terms by extracting and canceling out 5.
\frac{11}{12}+\frac{1}{60}+\frac{5}{300}
Reduce the fraction \frac{3}{180} to lowest terms by extracting and canceling out 3.
\frac{55}{60}+\frac{1}{60}+\frac{5}{300}
Least common multiple of 12 and 60 is 60. Convert \frac{11}{12} and \frac{1}{60} to fractions with denominator 60.
\frac{55+1}{60}+\frac{5}{300}
Since \frac{55}{60} and \frac{1}{60} have the same denominator, add them by adding their numerators.
\frac{56}{60}+\frac{5}{300}
Add 55 and 1 to get 56.
\frac{14}{15}+\frac{5}{300}
Reduce the fraction \frac{56}{60} to lowest terms by extracting and canceling out 4.
\frac{14}{15}+\frac{1}{60}
Reduce the fraction \frac{5}{300} to lowest terms by extracting and canceling out 5.
\frac{56}{60}+\frac{1}{60}
Least common multiple of 15 and 60 is 60. Convert \frac{14}{15} and \frac{1}{60} to fractions with denominator 60.
\frac{56+1}{60}
Since \frac{56}{60} and \frac{1}{60} have the same denominator, add them by adding their numerators.
\frac{57}{60}
Add 56 and 1 to get 57.
\frac{19}{20}
Reduce the fraction \frac{57}{60} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}