Evaluate
\frac{47}{60}\approx 0.783333333
Factor
\frac{47}{2 ^ {2} \cdot 3 \cdot 5} = 0.7833333333333333
Share
Copied to clipboard
\frac{3}{6}+\frac{2}{6}+\frac{1}{4}-\frac{\frac{1}{5}}{\frac{1}{3}}\times \frac{1}{6}-\frac{1}{5}
Least common multiple of 2 and 3 is 6. Convert \frac{1}{2} and \frac{1}{3} to fractions with denominator 6.
\frac{3+2}{6}+\frac{1}{4}-\frac{\frac{1}{5}}{\frac{1}{3}}\times \frac{1}{6}-\frac{1}{5}
Since \frac{3}{6} and \frac{2}{6} have the same denominator, add them by adding their numerators.
\frac{5}{6}+\frac{1}{4}-\frac{\frac{1}{5}}{\frac{1}{3}}\times \frac{1}{6}-\frac{1}{5}
Add 3 and 2 to get 5.
\frac{10}{12}+\frac{3}{12}-\frac{\frac{1}{5}}{\frac{1}{3}}\times \frac{1}{6}-\frac{1}{5}
Least common multiple of 6 and 4 is 12. Convert \frac{5}{6} and \frac{1}{4} to fractions with denominator 12.
\frac{10+3}{12}-\frac{\frac{1}{5}}{\frac{1}{3}}\times \frac{1}{6}-\frac{1}{5}
Since \frac{10}{12} and \frac{3}{12} have the same denominator, add them by adding their numerators.
\frac{13}{12}-\frac{\frac{1}{5}}{\frac{1}{3}}\times \frac{1}{6}-\frac{1}{5}
Add 10 and 3 to get 13.
\frac{13}{12}-\frac{1}{5}\times 3\times \frac{1}{6}-\frac{1}{5}
Divide \frac{1}{5} by \frac{1}{3} by multiplying \frac{1}{5} by the reciprocal of \frac{1}{3}.
\frac{13}{12}-\frac{3}{5}\times \frac{1}{6}-\frac{1}{5}
Multiply \frac{1}{5} and 3 to get \frac{3}{5}.
\frac{13}{12}-\frac{3\times 1}{5\times 6}-\frac{1}{5}
Multiply \frac{3}{5} times \frac{1}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{13}{12}-\frac{3}{30}-\frac{1}{5}
Do the multiplications in the fraction \frac{3\times 1}{5\times 6}.
\frac{13}{12}-\frac{1}{10}-\frac{1}{5}
Reduce the fraction \frac{3}{30} to lowest terms by extracting and canceling out 3.
\frac{65}{60}-\frac{6}{60}-\frac{1}{5}
Least common multiple of 12 and 10 is 60. Convert \frac{13}{12} and \frac{1}{10} to fractions with denominator 60.
\frac{65-6}{60}-\frac{1}{5}
Since \frac{65}{60} and \frac{6}{60} have the same denominator, subtract them by subtracting their numerators.
\frac{59}{60}-\frac{1}{5}
Subtract 6 from 65 to get 59.
\frac{59}{60}-\frac{12}{60}
Least common multiple of 60 and 5 is 60. Convert \frac{59}{60} and \frac{1}{5} to fractions with denominator 60.
\frac{59-12}{60}
Since \frac{59}{60} and \frac{12}{60} have the same denominator, subtract them by subtracting their numerators.
\frac{47}{60}
Subtract 12 from 59 to get 47.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}