Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{2\sqrt{3}+5}{\left(2\sqrt{3}-5\right)\left(2\sqrt{3}+5\right)}
Rationalize the denominator of \frac{1}{2\sqrt{3}-5} by multiplying numerator and denominator by 2\sqrt{3}+5.
\frac{2\sqrt{3}+5}{\left(2\sqrt{3}\right)^{2}-5^{2}}
Consider \left(2\sqrt{3}-5\right)\left(2\sqrt{3}+5\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\sqrt{3}+5}{2^{2}\left(\sqrt{3}\right)^{2}-5^{2}}
Expand \left(2\sqrt{3}\right)^{2}.
\frac{2\sqrt{3}+5}{4\left(\sqrt{3}\right)^{2}-5^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{2\sqrt{3}+5}{4\times 3-5^{2}}
The square of \sqrt{3} is 3.
\frac{2\sqrt{3}+5}{12-5^{2}}
Multiply 4 and 3 to get 12.
\frac{2\sqrt{3}+5}{12-25}
Calculate 5 to the power of 2 and get 25.
\frac{2\sqrt{3}+5}{-13}
Subtract 25 from 12 to get -13.
\frac{-2\sqrt{3}-5}{13}
Multiply both numerator and denominator by -1.