Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{2\sqrt{3}+1}{\left(2\sqrt{3}-1\right)\left(2\sqrt{3}+1\right)}+\frac{3}{\sqrt{3}+1}
Rationalize the denominator of \frac{1}{2\sqrt{3}-1} by multiplying numerator and denominator by 2\sqrt{3}+1.
\frac{2\sqrt{3}+1}{\left(2\sqrt{3}\right)^{2}-1^{2}}+\frac{3}{\sqrt{3}+1}
Consider \left(2\sqrt{3}-1\right)\left(2\sqrt{3}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\sqrt{3}+1}{2^{2}\left(\sqrt{3}\right)^{2}-1^{2}}+\frac{3}{\sqrt{3}+1}
Expand \left(2\sqrt{3}\right)^{2}.
\frac{2\sqrt{3}+1}{4\left(\sqrt{3}\right)^{2}-1^{2}}+\frac{3}{\sqrt{3}+1}
Calculate 2 to the power of 2 and get 4.
\frac{2\sqrt{3}+1}{4\times 3-1^{2}}+\frac{3}{\sqrt{3}+1}
The square of \sqrt{3} is 3.
\frac{2\sqrt{3}+1}{12-1^{2}}+\frac{3}{\sqrt{3}+1}
Multiply 4 and 3 to get 12.
\frac{2\sqrt{3}+1}{12-1}+\frac{3}{\sqrt{3}+1}
Calculate 1 to the power of 2 and get 1.
\frac{2\sqrt{3}+1}{11}+\frac{3}{\sqrt{3}+1}
Subtract 1 from 12 to get 11.
\frac{2\sqrt{3}+1}{11}+\frac{3\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}
Rationalize the denominator of \frac{3}{\sqrt{3}+1} by multiplying numerator and denominator by \sqrt{3}-1.
\frac{2\sqrt{3}+1}{11}+\frac{3\left(\sqrt{3}-1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}
Consider \left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\sqrt{3}+1}{11}+\frac{3\left(\sqrt{3}-1\right)}{3-1}
Square \sqrt{3}. Square 1.
\frac{2\sqrt{3}+1}{11}+\frac{3\left(\sqrt{3}-1\right)}{2}
Subtract 1 from 3 to get 2.
\frac{2\left(2\sqrt{3}+1\right)}{22}+\frac{11\times 3\left(\sqrt{3}-1\right)}{22}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 11 and 2 is 22. Multiply \frac{2\sqrt{3}+1}{11} times \frac{2}{2}. Multiply \frac{3\left(\sqrt{3}-1\right)}{2} times \frac{11}{11}.
\frac{2\left(2\sqrt{3}+1\right)+11\times 3\left(\sqrt{3}-1\right)}{22}
Since \frac{2\left(2\sqrt{3}+1\right)}{22} and \frac{11\times 3\left(\sqrt{3}-1\right)}{22} have the same denominator, add them by adding their numerators.
\frac{4\sqrt{3}+2+33\sqrt{3}-33}{22}
Do the multiplications in 2\left(2\sqrt{3}+1\right)+11\times 3\left(\sqrt{3}-1\right).
\frac{37\sqrt{3}-31}{22}
Do the calculations in 4\sqrt{3}+2+33\sqrt{3}-33.