Solve for a
a=\frac{1}{2}=0.5
Share
Copied to clipboard
-2a+2+\left(a-1\right)a=1+\left(a-1\right)a
Variable a cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by a-1.
-2a+2+a^{2}-a=1+\left(a-1\right)a
Use the distributive property to multiply a-1 by a.
-3a+2+a^{2}=1+\left(a-1\right)a
Combine -2a and -a to get -3a.
-3a+2+a^{2}=1+a^{2}-a
Use the distributive property to multiply a-1 by a.
-3a+2+a^{2}-a^{2}=1-a
Subtract a^{2} from both sides.
-3a+2=1-a
Combine a^{2} and -a^{2} to get 0.
-3a+2+a=1
Add a to both sides.
-2a+2=1
Combine -3a and a to get -2a.
-2a=1-2
Subtract 2 from both sides.
-2a=-1
Subtract 2 from 1 to get -1.
a=\frac{-1}{-2}
Divide both sides by -2.
a=\frac{1}{2}
Fraction \frac{-1}{-2} can be simplified to \frac{1}{2} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}