Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{1\left(2-3i\right)}{\left(2+3i\right)\left(2-3i\right)}-\frac{6+7i}{3i}
Multiply both numerator and denominator of \frac{1}{2+3i} by the complex conjugate of the denominator, 2-3i.
\frac{2-3i}{13}-\frac{6+7i}{3i}
Do the multiplications in \frac{1\left(2-3i\right)}{\left(2+3i\right)\left(2-3i\right)}.
\frac{2}{13}-\frac{3}{13}i-\frac{6+7i}{3i}
Divide 2-3i by 13 to get \frac{2}{13}-\frac{3}{13}i.
\frac{2}{13}-\frac{3}{13}i-\frac{-7+6i}{-3}
Multiply both numerator and denominator of \frac{6+7i}{3i} by imaginary unit i.
\frac{2}{13}-\frac{3}{13}i+\left(-\frac{7}{3}+2i\right)
Divide -7+6i by -3 to get \frac{7}{3}-2i.
-\frac{85}{39}+\frac{23}{13}i
Add \frac{2}{13}-\frac{3}{13}i and -\frac{7}{3}+2i to get -\frac{85}{39}+\frac{23}{13}i.
Re(\frac{1\left(2-3i\right)}{\left(2+3i\right)\left(2-3i\right)}-\frac{6+7i}{3i})
Multiply both numerator and denominator of \frac{1}{2+3i} by the complex conjugate of the denominator, 2-3i.
Re(\frac{2-3i}{13}-\frac{6+7i}{3i})
Do the multiplications in \frac{1\left(2-3i\right)}{\left(2+3i\right)\left(2-3i\right)}.
Re(\frac{2}{13}-\frac{3}{13}i-\frac{6+7i}{3i})
Divide 2-3i by 13 to get \frac{2}{13}-\frac{3}{13}i.
Re(\frac{2}{13}-\frac{3}{13}i-\frac{-7+6i}{-3})
Multiply both numerator and denominator of \frac{6+7i}{3i} by imaginary unit i.
Re(\frac{2}{13}-\frac{3}{13}i+\left(-\frac{7}{3}+2i\right))
Divide -7+6i by -3 to get \frac{7}{3}-2i.
Re(-\frac{85}{39}+\frac{23}{13}i)
Add \frac{2}{13}-\frac{3}{13}i and -\frac{7}{3}+2i to get -\frac{85}{39}+\frac{23}{13}i.
-\frac{85}{39}
The real part of -\frac{85}{39}+\frac{23}{13}i is -\frac{85}{39}.