Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{2-\sqrt{6}}{\left(2+\sqrt{6}\right)\left(2-\sqrt{6}\right)}-\frac{1}{2-\sqrt{6}}
Rationalize the denominator of \frac{1}{2+\sqrt{6}} by multiplying numerator and denominator by 2-\sqrt{6}.
\frac{2-\sqrt{6}}{2^{2}-\left(\sqrt{6}\right)^{2}}-\frac{1}{2-\sqrt{6}}
Consider \left(2+\sqrt{6}\right)\left(2-\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2-\sqrt{6}}{4-6}-\frac{1}{2-\sqrt{6}}
Square 2. Square \sqrt{6}.
\frac{2-\sqrt{6}}{-2}-\frac{1}{2-\sqrt{6}}
Subtract 6 from 4 to get -2.
\frac{-2+\sqrt{6}}{2}-\frac{1}{2-\sqrt{6}}
Multiply both numerator and denominator by -1.
\frac{-2+\sqrt{6}}{2}-\frac{2+\sqrt{6}}{\left(2-\sqrt{6}\right)\left(2+\sqrt{6}\right)}
Rationalize the denominator of \frac{1}{2-\sqrt{6}} by multiplying numerator and denominator by 2+\sqrt{6}.
\frac{-2+\sqrt{6}}{2}-\frac{2+\sqrt{6}}{2^{2}-\left(\sqrt{6}\right)^{2}}
Consider \left(2-\sqrt{6}\right)\left(2+\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-2+\sqrt{6}}{2}-\frac{2+\sqrt{6}}{4-6}
Square 2. Square \sqrt{6}.
\frac{-2+\sqrt{6}}{2}-\frac{2+\sqrt{6}}{-2}
Subtract 6 from 4 to get -2.
\frac{-2+\sqrt{6}}{2}-\frac{-2-\sqrt{6}}{2}
Multiply both numerator and denominator by -1.
\frac{-2+\sqrt{6}-\left(-2-\sqrt{6}\right)}{2}
Since \frac{-2+\sqrt{6}}{2} and \frac{-2-\sqrt{6}}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{-2+\sqrt{6}+2+\sqrt{6}}{2}
Do the multiplications in -2+\sqrt{6}-\left(-2-\sqrt{6}\right).
\frac{2\sqrt{6}}{2}
Do the calculations in -2+\sqrt{6}+2+\sqrt{6}.
\sqrt{6}
Cancel out 2 and 2.