Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{2-\sqrt{3}}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}+3-\sqrt{3}-2
Rationalize the denominator of \frac{1}{2+\sqrt{3}} by multiplying numerator and denominator by 2-\sqrt{3}.
\frac{2-\sqrt{3}}{2^{2}-\left(\sqrt{3}\right)^{2}}+3-\sqrt{3}-2
Consider \left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2-\sqrt{3}}{4-3}+3-\sqrt{3}-2
Square 2. Square \sqrt{3}.
\frac{2-\sqrt{3}}{1}+3-\sqrt{3}-2
Subtract 3 from 4 to get 1.
2-\sqrt{3}+3-\sqrt{3}-2
Anything divided by one gives itself.
5-\sqrt{3}-\sqrt{3}-2
Add 2 and 3 to get 5.
5-2\sqrt{3}-2
Combine -\sqrt{3} and -\sqrt{3} to get -2\sqrt{3}.
3-2\sqrt{3}
Subtract 2 from 5 to get 3.