Solve for x
x=2
x = \frac{5}{2} = 2\frac{1}{2} = 2.5
Graph
Share
Copied to clipboard
\frac{1}{15}x^{2}-\frac{3}{10}x+\frac{1}{3}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-\frac{3}{10}\right)±\sqrt{\left(-\frac{3}{10}\right)^{2}-4\times \frac{1}{15}\times \frac{1}{3}}}{2\times \frac{1}{15}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{15} for a, -\frac{3}{10} for b, and \frac{1}{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{3}{10}\right)±\sqrt{\frac{9}{100}-4\times \frac{1}{15}\times \frac{1}{3}}}{2\times \frac{1}{15}}
Square -\frac{3}{10} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{3}{10}\right)±\sqrt{\frac{9}{100}-\frac{4}{15}\times \frac{1}{3}}}{2\times \frac{1}{15}}
Multiply -4 times \frac{1}{15}.
x=\frac{-\left(-\frac{3}{10}\right)±\sqrt{\frac{9}{100}-\frac{4}{45}}}{2\times \frac{1}{15}}
Multiply -\frac{4}{15} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{3}{10}\right)±\sqrt{\frac{1}{900}}}{2\times \frac{1}{15}}
Add \frac{9}{100} to -\frac{4}{45} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{3}{10}\right)±\frac{1}{30}}{2\times \frac{1}{15}}
Take the square root of \frac{1}{900}.
x=\frac{\frac{3}{10}±\frac{1}{30}}{2\times \frac{1}{15}}
The opposite of -\frac{3}{10} is \frac{3}{10}.
x=\frac{\frac{3}{10}±\frac{1}{30}}{\frac{2}{15}}
Multiply 2 times \frac{1}{15}.
x=\frac{\frac{1}{3}}{\frac{2}{15}}
Now solve the equation x=\frac{\frac{3}{10}±\frac{1}{30}}{\frac{2}{15}} when ± is plus. Add \frac{3}{10} to \frac{1}{30} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{5}{2}
Divide \frac{1}{3} by \frac{2}{15} by multiplying \frac{1}{3} by the reciprocal of \frac{2}{15}.
x=\frac{\frac{4}{15}}{\frac{2}{15}}
Now solve the equation x=\frac{\frac{3}{10}±\frac{1}{30}}{\frac{2}{15}} when ± is minus. Subtract \frac{1}{30} from \frac{3}{10} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=2
Divide \frac{4}{15} by \frac{2}{15} by multiplying \frac{4}{15} by the reciprocal of \frac{2}{15}.
x=\frac{5}{2} x=2
The equation is now solved.
\frac{1}{15}x^{2}-\frac{3}{10}x+\frac{1}{3}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{1}{15}x^{2}-\frac{3}{10}x+\frac{1}{3}-\frac{1}{3}=-\frac{1}{3}
Subtract \frac{1}{3} from both sides of the equation.
\frac{1}{15}x^{2}-\frac{3}{10}x=-\frac{1}{3}
Subtracting \frac{1}{3} from itself leaves 0.
\frac{\frac{1}{15}x^{2}-\frac{3}{10}x}{\frac{1}{15}}=-\frac{\frac{1}{3}}{\frac{1}{15}}
Multiply both sides by 15.
x^{2}+\left(-\frac{\frac{3}{10}}{\frac{1}{15}}\right)x=-\frac{\frac{1}{3}}{\frac{1}{15}}
Dividing by \frac{1}{15} undoes the multiplication by \frac{1}{15}.
x^{2}-\frac{9}{2}x=-\frac{\frac{1}{3}}{\frac{1}{15}}
Divide -\frac{3}{10} by \frac{1}{15} by multiplying -\frac{3}{10} by the reciprocal of \frac{1}{15}.
x^{2}-\frac{9}{2}x=-5
Divide -\frac{1}{3} by \frac{1}{15} by multiplying -\frac{1}{3} by the reciprocal of \frac{1}{15}.
x^{2}-\frac{9}{2}x+\left(-\frac{9}{4}\right)^{2}=-5+\left(-\frac{9}{4}\right)^{2}
Divide -\frac{9}{2}, the coefficient of the x term, by 2 to get -\frac{9}{4}. Then add the square of -\frac{9}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{9}{2}x+\frac{81}{16}=-5+\frac{81}{16}
Square -\frac{9}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{9}{2}x+\frac{81}{16}=\frac{1}{16}
Add -5 to \frac{81}{16}.
\left(x-\frac{9}{4}\right)^{2}=\frac{1}{16}
Factor x^{2}-\frac{9}{2}x+\frac{81}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{4}\right)^{2}}=\sqrt{\frac{1}{16}}
Take the square root of both sides of the equation.
x-\frac{9}{4}=\frac{1}{4} x-\frac{9}{4}=-\frac{1}{4}
Simplify.
x=\frac{5}{2} x=2
Add \frac{9}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}