Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{1\left(11+5i\right)}{\left(11-5i\right)\left(11+5i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 11+5i.
\frac{1\left(11+5i\right)}{11^{2}-5^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{1\left(11+5i\right)}{146}
By definition, i^{2} is -1. Calculate the denominator.
\frac{11+5i}{146}
Multiply 1 and 11+5i to get 11+5i.
\frac{11}{146}+\frac{5}{146}i
Divide 11+5i by 146 to get \frac{11}{146}+\frac{5}{146}i.
Re(\frac{1\left(11+5i\right)}{\left(11-5i\right)\left(11+5i\right)})
Multiply both numerator and denominator of \frac{1}{11-5i} by the complex conjugate of the denominator, 11+5i.
Re(\frac{1\left(11+5i\right)}{11^{2}-5^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{1\left(11+5i\right)}{146})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{11+5i}{146})
Multiply 1 and 11+5i to get 11+5i.
Re(\frac{11}{146}+\frac{5}{146}i)
Divide 11+5i by 146 to get \frac{11}{146}+\frac{5}{146}i.
\frac{11}{146}
The real part of \frac{11}{146}+\frac{5}{146}i is \frac{11}{146}.