Solve for x
x=9
Graph
Share
Copied to clipboard
\frac{1}{10}x+\frac{1}{10}\times 51=-2\left(6-x\right)
Use the distributive property to multiply \frac{1}{10} by x+51.
\frac{1}{10}x+\frac{51}{10}=-2\left(6-x\right)
Multiply \frac{1}{10} and 51 to get \frac{51}{10}.
\frac{1}{10}x+\frac{51}{10}=-12+2x
Use the distributive property to multiply -2 by 6-x.
\frac{1}{10}x+\frac{51}{10}-2x=-12
Subtract 2x from both sides.
-\frac{19}{10}x+\frac{51}{10}=-12
Combine \frac{1}{10}x and -2x to get -\frac{19}{10}x.
-\frac{19}{10}x=-12-\frac{51}{10}
Subtract \frac{51}{10} from both sides.
-\frac{19}{10}x=-\frac{120}{10}-\frac{51}{10}
Convert -12 to fraction -\frac{120}{10}.
-\frac{19}{10}x=\frac{-120-51}{10}
Since -\frac{120}{10} and \frac{51}{10} have the same denominator, subtract them by subtracting their numerators.
-\frac{19}{10}x=-\frac{171}{10}
Subtract 51 from -120 to get -171.
x=-\frac{171}{10}\left(-\frac{10}{19}\right)
Multiply both sides by -\frac{10}{19}, the reciprocal of -\frac{19}{10}.
x=\frac{-171\left(-10\right)}{10\times 19}
Multiply -\frac{171}{10} times -\frac{10}{19} by multiplying numerator times numerator and denominator times denominator.
x=\frac{1710}{190}
Do the multiplications in the fraction \frac{-171\left(-10\right)}{10\times 19}.
x=9
Divide 1710 by 190 to get 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}