\frac { 1 } { 1,1 } + ( 1 - \frac { 100 } { ( 1,1 ) ^ { 10 } } )
Evaluate
-\frac{950483098489}{25937424601}\approx -36,645238034
Factor
-\frac{950483098489}{25937424601} = -36\frac{16735812853}{25937424601} = -36.64523803386226
Share
Copied to clipboard
\frac{10}{11}+1-\frac{100}{1,1^{10}}
Expand \frac{1}{1,1} by multiplying both numerator and the denominator by 10.
\frac{10}{11}+\frac{11}{11}-\frac{100}{1,1^{10}}
Convert 1 to fraction \frac{11}{11}.
\frac{10+11}{11}-\frac{100}{1,1^{10}}
Since \frac{10}{11} and \frac{11}{11} have the same denominator, add them by adding their numerators.
\frac{21}{11}-\frac{100}{1,1^{10}}
Add 10 and 11 to get 21.
\frac{21}{11}-\frac{100}{2,5937424601}
Calculate 1,1 to the power of 10 and get 2,5937424601.
\frac{21}{11}-\frac{1000000000000}{25937424601}
Expand \frac{100}{2,5937424601} by multiplying both numerator and the denominator by 10000000000.
\frac{49516901511}{25937424601}-\frac{1000000000000}{25937424601}
Least common multiple of 11 and 25937424601 is 25937424601. Convert \frac{21}{11} and \frac{1000000000000}{25937424601} to fractions with denominator 25937424601.
\frac{49516901511-1000000000000}{25937424601}
Since \frac{49516901511}{25937424601} and \frac{1000000000000}{25937424601} have the same denominator, subtract them by subtracting their numerators.
-\frac{950483098489}{25937424601}
Subtract 1000000000000 from 49516901511 to get -950483098489.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}