Solve for x
x=2
x=\frac{2}{3}\approx 0.666666667
Graph
Share
Copied to clipboard
1+\left(-x+1\right)\left(-3\right)=-3x\left(-x+1\right)+\left(-x+1\right)\times 2
Variable x cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by -x+1.
1+3x-3=-3x\left(-x+1\right)+\left(-x+1\right)\times 2
Use the distributive property to multiply -x+1 by -3.
-2+3x=-3x\left(-x+1\right)+\left(-x+1\right)\times 2
Subtract 3 from 1 to get -2.
-2+3x=3x^{2}-3x+\left(-x+1\right)\times 2
Use the distributive property to multiply -3x by -x+1.
-2+3x=3x^{2}-3x-2x+2
Use the distributive property to multiply -x+1 by 2.
-2+3x=3x^{2}-5x+2
Combine -3x and -2x to get -5x.
-2+3x-3x^{2}=-5x+2
Subtract 3x^{2} from both sides.
-2+3x-3x^{2}+5x=2
Add 5x to both sides.
-2+8x-3x^{2}=2
Combine 3x and 5x to get 8x.
-2+8x-3x^{2}-2=0
Subtract 2 from both sides.
-4+8x-3x^{2}=0
Subtract 2 from -2 to get -4.
-3x^{2}+8x-4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-8±\sqrt{8^{2}-4\left(-3\right)\left(-4\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 8 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\left(-3\right)\left(-4\right)}}{2\left(-3\right)}
Square 8.
x=\frac{-8±\sqrt{64+12\left(-4\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-8±\sqrt{64-48}}{2\left(-3\right)}
Multiply 12 times -4.
x=\frac{-8±\sqrt{16}}{2\left(-3\right)}
Add 64 to -48.
x=\frac{-8±4}{2\left(-3\right)}
Take the square root of 16.
x=\frac{-8±4}{-6}
Multiply 2 times -3.
x=-\frac{4}{-6}
Now solve the equation x=\frac{-8±4}{-6} when ± is plus. Add -8 to 4.
x=\frac{2}{3}
Reduce the fraction \frac{-4}{-6} to lowest terms by extracting and canceling out 2.
x=-\frac{12}{-6}
Now solve the equation x=\frac{-8±4}{-6} when ± is minus. Subtract 4 from -8.
x=2
Divide -12 by -6.
x=\frac{2}{3} x=2
The equation is now solved.
1+\left(-x+1\right)\left(-3\right)=-3x\left(-x+1\right)+\left(-x+1\right)\times 2
Variable x cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by -x+1.
1+3x-3=-3x\left(-x+1\right)+\left(-x+1\right)\times 2
Use the distributive property to multiply -x+1 by -3.
-2+3x=-3x\left(-x+1\right)+\left(-x+1\right)\times 2
Subtract 3 from 1 to get -2.
-2+3x=3x^{2}-3x+\left(-x+1\right)\times 2
Use the distributive property to multiply -3x by -x+1.
-2+3x=3x^{2}-3x-2x+2
Use the distributive property to multiply -x+1 by 2.
-2+3x=3x^{2}-5x+2
Combine -3x and -2x to get -5x.
-2+3x-3x^{2}=-5x+2
Subtract 3x^{2} from both sides.
-2+3x-3x^{2}+5x=2
Add 5x to both sides.
-2+8x-3x^{2}=2
Combine 3x and 5x to get 8x.
8x-3x^{2}=2+2
Add 2 to both sides.
8x-3x^{2}=4
Add 2 and 2 to get 4.
-3x^{2}+8x=4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3x^{2}+8x}{-3}=\frac{4}{-3}
Divide both sides by -3.
x^{2}+\frac{8}{-3}x=\frac{4}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-\frac{8}{3}x=\frac{4}{-3}
Divide 8 by -3.
x^{2}-\frac{8}{3}x=-\frac{4}{3}
Divide 4 by -3.
x^{2}-\frac{8}{3}x+\left(-\frac{4}{3}\right)^{2}=-\frac{4}{3}+\left(-\frac{4}{3}\right)^{2}
Divide -\frac{8}{3}, the coefficient of the x term, by 2 to get -\frac{4}{3}. Then add the square of -\frac{4}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{8}{3}x+\frac{16}{9}=-\frac{4}{3}+\frac{16}{9}
Square -\frac{4}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{8}{3}x+\frac{16}{9}=\frac{4}{9}
Add -\frac{4}{3} to \frac{16}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{4}{3}\right)^{2}=\frac{4}{9}
Factor x^{2}-\frac{8}{3}x+\frac{16}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{4}{3}\right)^{2}}=\sqrt{\frac{4}{9}}
Take the square root of both sides of the equation.
x-\frac{4}{3}=\frac{2}{3} x-\frac{4}{3}=-\frac{2}{3}
Simplify.
x=2 x=\frac{2}{3}
Add \frac{4}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}