Evaluate
\frac{4450}{3981}\approx 1.117809596
Factor
\frac{2 \cdot 89 \cdot 5 ^ {2}}{3 \cdot 1327} = 1\frac{469}{3981} = 1.1178095955790002
Quiz
Arithmetic
5 problems similar to:
\frac { 1 } { 1 - 0.42 \times ( 1 - \frac { 1 } { 1.335 } ) } =
Share
Copied to clipboard
\frac{1}{1-0.42\left(1-\frac{1000}{1335}\right)}
Expand \frac{1}{1.335} by multiplying both numerator and the denominator by 1000.
\frac{1}{1-0.42\left(1-\frac{200}{267}\right)}
Reduce the fraction \frac{1000}{1335} to lowest terms by extracting and canceling out 5.
\frac{1}{1-0.42\left(\frac{267}{267}-\frac{200}{267}\right)}
Convert 1 to fraction \frac{267}{267}.
\frac{1}{1-0.42\times \frac{267-200}{267}}
Since \frac{267}{267} and \frac{200}{267} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{1-0.42\times \frac{67}{267}}
Subtract 200 from 267 to get 67.
\frac{1}{1-\frac{21}{50}\times \frac{67}{267}}
Convert decimal number 0.42 to fraction \frac{42}{100}. Reduce the fraction \frac{42}{100} to lowest terms by extracting and canceling out 2.
\frac{1}{1-\frac{21\times 67}{50\times 267}}
Multiply \frac{21}{50} times \frac{67}{267} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{1-\frac{1407}{13350}}
Do the multiplications in the fraction \frac{21\times 67}{50\times 267}.
\frac{1}{1-\frac{469}{4450}}
Reduce the fraction \frac{1407}{13350} to lowest terms by extracting and canceling out 3.
\frac{1}{\frac{4450}{4450}-\frac{469}{4450}}
Convert 1 to fraction \frac{4450}{4450}.
\frac{1}{\frac{4450-469}{4450}}
Since \frac{4450}{4450} and \frac{469}{4450} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{\frac{3981}{4450}}
Subtract 469 from 4450 to get 3981.
1\times \frac{4450}{3981}
Divide 1 by \frac{3981}{4450} by multiplying 1 by the reciprocal of \frac{3981}{4450}.
\frac{4450}{3981}
Multiply 1 and \frac{4450}{3981} to get \frac{4450}{3981}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}