Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{1\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}+i
Multiply both numerator and denominator of \frac{1}{1+i} by the complex conjugate of the denominator, 1-i.
\frac{1\left(1-i\right)}{1^{2}-i^{2}}+i
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{1\left(1-i\right)}{2}+i
By definition, i^{2} is -1. Calculate the denominator.
\frac{1-i}{2}+i
Multiply 1 and 1-i to get 1-i.
\frac{1}{2}-\frac{1}{2}i+i
Divide 1-i by 2 to get \frac{1}{2}-\frac{1}{2}i.
\frac{1}{2}+\left(-\frac{1}{2}+1\right)i
Combine the real and imaginary parts in numbers \frac{1}{2}-\frac{1}{2}i and i.
\frac{1}{2}+\frac{1}{2}i
Add -\frac{1}{2} to 1.
Re(\frac{1\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}+i)
Multiply both numerator and denominator of \frac{1}{1+i} by the complex conjugate of the denominator, 1-i.
Re(\frac{1\left(1-i\right)}{1^{2}-i^{2}}+i)
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{1\left(1-i\right)}{2}+i)
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{1-i}{2}+i)
Multiply 1 and 1-i to get 1-i.
Re(\frac{1}{2}-\frac{1}{2}i+i)
Divide 1-i by 2 to get \frac{1}{2}-\frac{1}{2}i.
Re(\frac{1}{2}+\left(-\frac{1}{2}+1\right)i)
Combine the real and imaginary parts in numbers \frac{1}{2}-\frac{1}{2}i and i.
Re(\frac{1}{2}+\frac{1}{2}i)
Add -\frac{1}{2} to 1.
\frac{1}{2}
The real part of \frac{1}{2}+\frac{1}{2}i is \frac{1}{2}.