Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{\frac{\left(1-x^{2}\right)^{2}}{\left(1-x^{2}\right)^{2}}+\frac{4x^{2}}{\left(1-x^{2}\right)^{2}}}\times \frac{1+x^{2}}{\left(1-x^{2}\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(1-x^{2}\right)^{2}}{\left(1-x^{2}\right)^{2}}.
\frac{1}{\frac{\left(1-x^{2}\right)^{2}+4x^{2}}{\left(1-x^{2}\right)^{2}}}\times \frac{1+x^{2}}{\left(1-x^{2}\right)^{2}}
Since \frac{\left(1-x^{2}\right)^{2}}{\left(1-x^{2}\right)^{2}} and \frac{4x^{2}}{\left(1-x^{2}\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{1}{\frac{1-2x^{2}+x^{4}+4x^{2}}{\left(1-x^{2}\right)^{2}}}\times \frac{1+x^{2}}{\left(1-x^{2}\right)^{2}}
Do the multiplications in \left(1-x^{2}\right)^{2}+4x^{2}.
\frac{1}{\frac{1+2x^{2}+x^{4}}{\left(1-x^{2}\right)^{2}}}\times \frac{1+x^{2}}{\left(1-x^{2}\right)^{2}}
Combine like terms in 1-2x^{2}+x^{4}+4x^{2}.
\frac{\left(1-x^{2}\right)^{2}}{1+2x^{2}+x^{4}}\times \frac{1+x^{2}}{\left(1-x^{2}\right)^{2}}
Divide 1 by \frac{1+2x^{2}+x^{4}}{\left(1-x^{2}\right)^{2}} by multiplying 1 by the reciprocal of \frac{1+2x^{2}+x^{4}}{\left(1-x^{2}\right)^{2}}.
\frac{\left(1-x^{2}\right)^{2}\left(1+x^{2}\right)}{\left(1+2x^{2}+x^{4}\right)\left(1-x^{2}\right)^{2}}
Multiply \frac{\left(1-x^{2}\right)^{2}}{1+2x^{2}+x^{4}} times \frac{1+x^{2}}{\left(1-x^{2}\right)^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{x^{2}+1}{x^{4}+2x^{2}+1}
Cancel out \left(-x^{2}+1\right)^{2} in both numerator and denominator.
\frac{x^{2}+1}{\left(x^{2}+1\right)^{2}}
Factor the expressions that are not already factored.
\frac{1}{x^{2}+1}
Cancel out x^{2}+1 in both numerator and denominator.
\frac{1}{\frac{\left(1-x^{2}\right)^{2}}{\left(1-x^{2}\right)^{2}}+\frac{4x^{2}}{\left(1-x^{2}\right)^{2}}}\times \frac{1+x^{2}}{\left(1-x^{2}\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(1-x^{2}\right)^{2}}{\left(1-x^{2}\right)^{2}}.
\frac{1}{\frac{\left(1-x^{2}\right)^{2}+4x^{2}}{\left(1-x^{2}\right)^{2}}}\times \frac{1+x^{2}}{\left(1-x^{2}\right)^{2}}
Since \frac{\left(1-x^{2}\right)^{2}}{\left(1-x^{2}\right)^{2}} and \frac{4x^{2}}{\left(1-x^{2}\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{1}{\frac{1-2x^{2}+x^{4}+4x^{2}}{\left(1-x^{2}\right)^{2}}}\times \frac{1+x^{2}}{\left(1-x^{2}\right)^{2}}
Do the multiplications in \left(1-x^{2}\right)^{2}+4x^{2}.
\frac{1}{\frac{1+2x^{2}+x^{4}}{\left(1-x^{2}\right)^{2}}}\times \frac{1+x^{2}}{\left(1-x^{2}\right)^{2}}
Combine like terms in 1-2x^{2}+x^{4}+4x^{2}.
\frac{\left(1-x^{2}\right)^{2}}{1+2x^{2}+x^{4}}\times \frac{1+x^{2}}{\left(1-x^{2}\right)^{2}}
Divide 1 by \frac{1+2x^{2}+x^{4}}{\left(1-x^{2}\right)^{2}} by multiplying 1 by the reciprocal of \frac{1+2x^{2}+x^{4}}{\left(1-x^{2}\right)^{2}}.
\frac{\left(1-x^{2}\right)^{2}\left(1+x^{2}\right)}{\left(1+2x^{2}+x^{4}\right)\left(1-x^{2}\right)^{2}}
Multiply \frac{\left(1-x^{2}\right)^{2}}{1+2x^{2}+x^{4}} times \frac{1+x^{2}}{\left(1-x^{2}\right)^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{x^{2}+1}{x^{4}+2x^{2}+1}
Cancel out \left(-x^{2}+1\right)^{2} in both numerator and denominator.
\frac{x^{2}+1}{\left(x^{2}+1\right)^{2}}
Factor the expressions that are not already factored.
\frac{1}{x^{2}+1}
Cancel out x^{2}+1 in both numerator and denominator.