Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{1\left(0.625+1.225i\right)}{\left(0.625-1.225i\right)\left(0.625+1.225i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 0.625+1.225i.
\frac{1\left(0.625+1.225i\right)}{0.625^{2}-1.225^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{1\left(0.625+1.225i\right)}{1.89125}
By definition, i^{2} is -1. Calculate the denominator.
\frac{0.625+1.225i}{1.89125}
Multiply 1 and 0.625+1.225i to get 0.625+1.225i.
\frac{500}{1513}+\frac{980}{1513}i
Divide 0.625+1.225i by 1.89125 to get \frac{500}{1513}+\frac{980}{1513}i.
Re(\frac{1\left(0.625+1.225i\right)}{\left(0.625-1.225i\right)\left(0.625+1.225i\right)})
Multiply both numerator and denominator of \frac{1}{0.625-1.225i} by the complex conjugate of the denominator, 0.625+1.225i.
Re(\frac{1\left(0.625+1.225i\right)}{0.625^{2}-1.225^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{1\left(0.625+1.225i\right)}{1.89125})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{0.625+1.225i}{1.89125})
Multiply 1 and 0.625+1.225i to get 0.625+1.225i.
Re(\frac{500}{1513}+\frac{980}{1513}i)
Divide 0.625+1.225i by 1.89125 to get \frac{500}{1513}+\frac{980}{1513}i.
\frac{500}{1513}
The real part of \frac{500}{1513}+\frac{980}{1513}i is \frac{500}{1513}.