Evaluate
-\frac{2\sqrt{3}}{3}+1\approx -0.154700538
Share
Copied to clipboard
\frac{-2\sqrt{3}+3}{\left(-2\sqrt{3}-3\right)\left(-2\sqrt{3}+3\right)}
Rationalize the denominator of \frac{1}{-2\sqrt{3}-3} by multiplying numerator and denominator by -2\sqrt{3}+3.
\frac{-2\sqrt{3}+3}{\left(-2\sqrt{3}\right)^{2}-3^{2}}
Consider \left(-2\sqrt{3}-3\right)\left(-2\sqrt{3}+3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-2\sqrt{3}+3}{\left(-2\right)^{2}\left(\sqrt{3}\right)^{2}-3^{2}}
Expand \left(-2\sqrt{3}\right)^{2}.
\frac{-2\sqrt{3}+3}{4\left(\sqrt{3}\right)^{2}-3^{2}}
Calculate -2 to the power of 2 and get 4.
\frac{-2\sqrt{3}+3}{4\times 3-3^{2}}
The square of \sqrt{3} is 3.
\frac{-2\sqrt{3}+3}{12-3^{2}}
Multiply 4 and 3 to get 12.
\frac{-2\sqrt{3}+3}{12-9}
Calculate 3 to the power of 2 and get 9.
\frac{-2\sqrt{3}+3}{3}
Subtract 9 from 12 to get 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}