Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{\left(x-2\right)^{2}}+\frac{\left(x-3\right)\left(2x+4\right)}{\left(x-2\right)^{4}}
Express \left(x-3\right)\times \frac{2x+4}{\left(x-2\right)^{4}} as a single fraction.
\frac{\left(x-2\right)^{2}}{\left(x-2\right)^{4}}+\frac{\left(x-3\right)\left(2x+4\right)}{\left(x-2\right)^{4}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)^{2} and \left(x-2\right)^{4} is \left(x-2\right)^{4}. Multiply \frac{1}{\left(x-2\right)^{2}} times \frac{\left(x-2\right)^{2}}{\left(x-2\right)^{2}}.
\frac{\left(x-2\right)^{2}+\left(x-3\right)\left(2x+4\right)}{\left(x-2\right)^{4}}
Since \frac{\left(x-2\right)^{2}}{\left(x-2\right)^{4}} and \frac{\left(x-3\right)\left(2x+4\right)}{\left(x-2\right)^{4}} have the same denominator, add them by adding their numerators.
\frac{x^{2}-4x+4+2x^{2}+4x-6x-12}{\left(x-2\right)^{4}}
Do the multiplications in \left(x-2\right)^{2}+\left(x-3\right)\left(2x+4\right).
\frac{3x^{2}-6x-8}{\left(x-2\right)^{4}}
Combine like terms in x^{2}-4x+4+2x^{2}+4x-6x-12.
\frac{3x^{2}-6x-8}{x^{4}-8x^{3}+24x^{2}-32x+16}
Expand \left(x-2\right)^{4}.
\frac{1}{\left(x-2\right)^{2}}+\frac{\left(x-3\right)\left(2x+4\right)}{\left(x-2\right)^{4}}
Express \left(x-3\right)\times \frac{2x+4}{\left(x-2\right)^{4}} as a single fraction.
\frac{\left(x-2\right)^{2}}{\left(x-2\right)^{4}}+\frac{\left(x-3\right)\left(2x+4\right)}{\left(x-2\right)^{4}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)^{2} and \left(x-2\right)^{4} is \left(x-2\right)^{4}. Multiply \frac{1}{\left(x-2\right)^{2}} times \frac{\left(x-2\right)^{2}}{\left(x-2\right)^{2}}.
\frac{\left(x-2\right)^{2}+\left(x-3\right)\left(2x+4\right)}{\left(x-2\right)^{4}}
Since \frac{\left(x-2\right)^{2}}{\left(x-2\right)^{4}} and \frac{\left(x-3\right)\left(2x+4\right)}{\left(x-2\right)^{4}} have the same denominator, add them by adding their numerators.
\frac{x^{2}-4x+4+2x^{2}+4x-6x-12}{\left(x-2\right)^{4}}
Do the multiplications in \left(x-2\right)^{2}+\left(x-3\right)\left(2x+4\right).
\frac{3x^{2}-6x-8}{\left(x-2\right)^{4}}
Combine like terms in x^{2}-4x+4+2x^{2}+4x-6x-12.
\frac{3x^{2}-6x-8}{x^{4}-8x^{3}+24x^{2}-32x+16}
Expand \left(x-2\right)^{4}.