Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{n\left(n+3\right)}-\frac{1}{\left(n+1\right)\left(n+4\right)}
Factor \left(n-1\right)^{2}+5\left(n-1\right)+4. Factor n^{2}+5n+4.
\frac{\left(n+1\right)\left(n+4\right)}{n\left(n+1\right)\left(n+3\right)\left(n+4\right)}-\frac{n\left(n+3\right)}{n\left(n+1\right)\left(n+3\right)\left(n+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of n\left(n+3\right) and \left(n+1\right)\left(n+4\right) is n\left(n+1\right)\left(n+3\right)\left(n+4\right). Multiply \frac{1}{n\left(n+3\right)} times \frac{\left(n+1\right)\left(n+4\right)}{\left(n+1\right)\left(n+4\right)}. Multiply \frac{1}{\left(n+1\right)\left(n+4\right)} times \frac{n\left(n+3\right)}{n\left(n+3\right)}.
\frac{\left(n+1\right)\left(n+4\right)-n\left(n+3\right)}{n\left(n+1\right)\left(n+3\right)\left(n+4\right)}
Since \frac{\left(n+1\right)\left(n+4\right)}{n\left(n+1\right)\left(n+3\right)\left(n+4\right)} and \frac{n\left(n+3\right)}{n\left(n+1\right)\left(n+3\right)\left(n+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{n^{2}+4n+n+4-n^{2}-3n}{n\left(n+1\right)\left(n+3\right)\left(n+4\right)}
Do the multiplications in \left(n+1\right)\left(n+4\right)-n\left(n+3\right).
\frac{2n+4}{n\left(n+1\right)\left(n+3\right)\left(n+4\right)}
Combine like terms in n^{2}+4n+n+4-n^{2}-3n.
\frac{2n+4}{n^{4}+8n^{3}+19n^{2}+12n}
Expand n\left(n+1\right)\left(n+3\right)\left(n+4\right).
\frac{1}{n\left(n+3\right)}-\frac{1}{\left(n+1\right)\left(n+4\right)}
Factor \left(n-1\right)^{2}+5\left(n-1\right)+4. Factor n^{2}+5n+4.
\frac{\left(n+1\right)\left(n+4\right)}{n\left(n+1\right)\left(n+3\right)\left(n+4\right)}-\frac{n\left(n+3\right)}{n\left(n+1\right)\left(n+3\right)\left(n+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of n\left(n+3\right) and \left(n+1\right)\left(n+4\right) is n\left(n+1\right)\left(n+3\right)\left(n+4\right). Multiply \frac{1}{n\left(n+3\right)} times \frac{\left(n+1\right)\left(n+4\right)}{\left(n+1\right)\left(n+4\right)}. Multiply \frac{1}{\left(n+1\right)\left(n+4\right)} times \frac{n\left(n+3\right)}{n\left(n+3\right)}.
\frac{\left(n+1\right)\left(n+4\right)-n\left(n+3\right)}{n\left(n+1\right)\left(n+3\right)\left(n+4\right)}
Since \frac{\left(n+1\right)\left(n+4\right)}{n\left(n+1\right)\left(n+3\right)\left(n+4\right)} and \frac{n\left(n+3\right)}{n\left(n+1\right)\left(n+3\right)\left(n+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{n^{2}+4n+n+4-n^{2}-3n}{n\left(n+1\right)\left(n+3\right)\left(n+4\right)}
Do the multiplications in \left(n+1\right)\left(n+4\right)-n\left(n+3\right).
\frac{2n+4}{n\left(n+1\right)\left(n+3\right)\left(n+4\right)}
Combine like terms in n^{2}+4n+n+4-n^{2}-3n.
\frac{2n+4}{n^{4}+8n^{3}+19n^{2}+12n}
Expand n\left(n+1\right)\left(n+3\right)\left(n+4\right).