Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+\left(a+1\right)^{2}x-a\left(a+1\right)^{2}-a\left(a+1\right)x=0
Multiply both sides of the equation by a\left(a+1\right)^{3}, the least common multiple of \left(a+1\right)^{3},a^{2}+a,a+1,a^{2}+2a+1.
a+\left(a^{2}+2a+1\right)x-a\left(a+1\right)^{2}-a\left(a+1\right)x=0
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a+1\right)^{2}.
a+a^{2}x+2ax+x-a\left(a+1\right)^{2}-a\left(a+1\right)x=0
Use the distributive property to multiply a^{2}+2a+1 by x.
a+a^{2}x+2ax+x-a\left(a^{2}+2a+1\right)-a\left(a+1\right)x=0
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a+1\right)^{2}.
a+a^{2}x+2ax+x-\left(a^{3}+2a^{2}+a\right)-a\left(a+1\right)x=0
Use the distributive property to multiply a by a^{2}+2a+1.
a+a^{2}x+2ax+x-a^{3}-2a^{2}-a-a\left(a+1\right)x=0
To find the opposite of a^{3}+2a^{2}+a, find the opposite of each term.
a^{2}x+2ax+x-a^{3}-2a^{2}-a\left(a+1\right)x=0
Combine a and -a to get 0.
a^{2}x+2ax+x-a^{3}-2a^{2}-\left(a^{2}+a\right)x=0
Use the distributive property to multiply a by a+1.
a^{2}x+2ax+x-a^{3}-2a^{2}-\left(a^{2}x+ax\right)=0
Use the distributive property to multiply a^{2}+a by x.
a^{2}x+2ax+x-a^{3}-2a^{2}-a^{2}x-ax=0
To find the opposite of a^{2}x+ax, find the opposite of each term.
2ax+x-a^{3}-2a^{2}-ax=0
Combine a^{2}x and -a^{2}x to get 0.
ax+x-a^{3}-2a^{2}=0
Combine 2ax and -ax to get ax.
ax+x-2a^{2}=a^{3}
Add a^{3} to both sides. Anything plus zero gives itself.
ax+x=a^{3}+2a^{2}
Add 2a^{2} to both sides.
\left(a+1\right)x=a^{3}+2a^{2}
Combine all terms containing x.
\frac{\left(a+1\right)x}{a+1}=\frac{\left(a+2\right)a^{2}}{a+1}
Divide both sides by a+1.
x=\frac{\left(a+2\right)a^{2}}{a+1}
Dividing by a+1 undoes the multiplication by a+1.