Solve for x
x=\frac{\left(a+2\right)a^{2}}{a+1}
a\neq -1\text{ and }a\neq 0
Graph
Share
Copied to clipboard
a+\left(a+1\right)^{2}x-a\left(a+1\right)^{2}-a\left(a+1\right)x=0
Multiply both sides of the equation by a\left(a+1\right)^{3}, the least common multiple of \left(a+1\right)^{3},a^{2}+a,a+1,a^{2}+2a+1.
a+\left(a^{2}+2a+1\right)x-a\left(a+1\right)^{2}-a\left(a+1\right)x=0
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a+1\right)^{2}.
a+a^{2}x+2ax+x-a\left(a+1\right)^{2}-a\left(a+1\right)x=0
Use the distributive property to multiply a^{2}+2a+1 by x.
a+a^{2}x+2ax+x-a\left(a^{2}+2a+1\right)-a\left(a+1\right)x=0
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a+1\right)^{2}.
a+a^{2}x+2ax+x-\left(a^{3}+2a^{2}+a\right)-a\left(a+1\right)x=0
Use the distributive property to multiply a by a^{2}+2a+1.
a+a^{2}x+2ax+x-a^{3}-2a^{2}-a-a\left(a+1\right)x=0
To find the opposite of a^{3}+2a^{2}+a, find the opposite of each term.
a^{2}x+2ax+x-a^{3}-2a^{2}-a\left(a+1\right)x=0
Combine a and -a to get 0.
a^{2}x+2ax+x-a^{3}-2a^{2}-\left(a^{2}+a\right)x=0
Use the distributive property to multiply a by a+1.
a^{2}x+2ax+x-a^{3}-2a^{2}-\left(a^{2}x+ax\right)=0
Use the distributive property to multiply a^{2}+a by x.
a^{2}x+2ax+x-a^{3}-2a^{2}-a^{2}x-ax=0
To find the opposite of a^{2}x+ax, find the opposite of each term.
2ax+x-a^{3}-2a^{2}-ax=0
Combine a^{2}x and -a^{2}x to get 0.
ax+x-a^{3}-2a^{2}=0
Combine 2ax and -ax to get ax.
ax+x-2a^{2}=a^{3}
Add a^{3} to both sides. Anything plus zero gives itself.
ax+x=a^{3}+2a^{2}
Add 2a^{2} to both sides.
\left(a+1\right)x=a^{3}+2a^{2}
Combine all terms containing x.
\frac{\left(a+1\right)x}{a+1}=\frac{\left(a+2\right)a^{2}}{a+1}
Divide both sides by a+1.
x=\frac{\left(a+2\right)a^{2}}{a+1}
Dividing by a+1 undoes the multiplication by a+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}