\frac { 1 } { ( 50 - m ) ^ { 2 } } d m = 0.002 d t
Solve for d
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{R}\text{, }&t=\frac{500m}{\left(m-50\right)^{2}}\text{ and }m\neq 50\end{matrix}\right.
Solve for m
\left\{\begin{matrix}\\m=0\text{; }m\neq 50\text{, }&\text{unconditionally}\\m=\frac{50\left(t+\sqrt{5\left(2t+5\right)}+5\right)}{t}\text{; }m=\frac{50\left(t-\sqrt{5\left(2t+5\right)}+5\right)}{t}\text{, }&t\neq 0\text{ and }t\geq -\frac{5}{2}\end{matrix}\right.
Share
Copied to clipboard
1dm=0.002dt\left(m-50\right)^{2}
Multiply both sides of the equation by \left(m-50\right)^{2}.
1dm=0.002dt\left(m^{2}-100m+2500\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(m-50\right)^{2}.
1dm=0.002dtm^{2}-0.2dtm+5dt
Use the distributive property to multiply 0.002dt by m^{2}-100m+2500.
1dm-0.002dtm^{2}=-0.2dtm+5dt
Subtract 0.002dtm^{2} from both sides.
1dm-0.002dtm^{2}+0.2dtm=5dt
Add 0.2dtm to both sides.
1dm-0.002dtm^{2}+0.2dtm-5dt=0
Subtract 5dt from both sides.
dm-0.002dtm^{2}+0.2dmt-5dt=0
Reorder the terms.
\left(m-0.002tm^{2}+0.2mt-5t\right)d=0
Combine all terms containing d.
\left(-\frac{tm^{2}}{500}+\frac{mt}{5}+m-5t\right)d=0
The equation is in standard form.
d=0
Divide 0 by m-0.002tm^{2}+0.2mt-5t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}