Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{4-2\sqrt{3}}{\left(4+2\sqrt{3}\right)\left(4-2\sqrt{3}\right)}
Rationalize the denominator of \frac{1}{4+2\sqrt{3}} by multiplying numerator and denominator by 4-2\sqrt{3}.
\frac{4-2\sqrt{3}}{4^{2}-\left(2\sqrt{3}\right)^{2}}
Consider \left(4+2\sqrt{3}\right)\left(4-2\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4-2\sqrt{3}}{16-\left(2\sqrt{3}\right)^{2}}
Calculate 4 to the power of 2 and get 16.
\frac{4-2\sqrt{3}}{16-2^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(2\sqrt{3}\right)^{2}.
\frac{4-2\sqrt{3}}{16-4\left(\sqrt{3}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{4-2\sqrt{3}}{16-4\times 3}
The square of \sqrt{3} is 3.
\frac{4-2\sqrt{3}}{16-12}
Multiply 4 and 3 to get 12.
\frac{4-2\sqrt{3}}{4}
Subtract 12 from 16 to get 4.