Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{1+3a+9a^{2}}{\left(3a-1\right)\left(9a^{2}+3a+1\right)\left(1+3a\right)}
Divide \frac{1}{\left(3a-1\right)\left(9a^{2}+3a+1\right)} by \frac{1+3a}{1+3a+9a^{2}} by multiplying \frac{1}{\left(3a-1\right)\left(9a^{2}+3a+1\right)} by the reciprocal of \frac{1+3a}{1+3a+9a^{2}}.
\frac{1}{\left(3a-1\right)\left(3a+1\right)}
Cancel out 9a^{2}+3a+1 in both numerator and denominator.
\frac{1}{\left(3a\right)^{2}-1}
Consider \left(3a-1\right)\left(3a+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
\frac{1}{3^{2}a^{2}-1}
Expand \left(3a\right)^{2}.
\frac{1}{9a^{2}-1}
Calculate 3 to the power of 2 and get 9.
\frac{1+3a+9a^{2}}{\left(3a-1\right)\left(9a^{2}+3a+1\right)\left(1+3a\right)}
Divide \frac{1}{\left(3a-1\right)\left(9a^{2}+3a+1\right)} by \frac{1+3a}{1+3a+9a^{2}} by multiplying \frac{1}{\left(3a-1\right)\left(9a^{2}+3a+1\right)} by the reciprocal of \frac{1+3a}{1+3a+9a^{2}}.
\frac{1}{\left(3a-1\right)\left(3a+1\right)}
Cancel out 9a^{2}+3a+1 in both numerator and denominator.
\frac{1}{\left(3a\right)^{2}-1}
Consider \left(3a-1\right)\left(3a+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
\frac{1}{3^{2}a^{2}-1}
Expand \left(3a\right)^{2}.
\frac{1}{9a^{2}-1}
Calculate 3 to the power of 2 and get 9.