Evaluate
\frac{1}{9a^{2}-1}
Expand
\frac{1}{9a^{2}-1}
Share
Copied to clipboard
\frac{1+3a+9a^{2}}{\left(3a-1\right)\left(9a^{2}+3a+1\right)\left(1+3a\right)}
Divide \frac{1}{\left(3a-1\right)\left(9a^{2}+3a+1\right)} by \frac{1+3a}{1+3a+9a^{2}} by multiplying \frac{1}{\left(3a-1\right)\left(9a^{2}+3a+1\right)} by the reciprocal of \frac{1+3a}{1+3a+9a^{2}}.
\frac{1}{\left(3a-1\right)\left(3a+1\right)}
Cancel out 9a^{2}+3a+1 in both numerator and denominator.
\frac{1}{\left(3a\right)^{2}-1}
Consider \left(3a-1\right)\left(3a+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
\frac{1}{3^{2}a^{2}-1}
Expand \left(3a\right)^{2}.
\frac{1}{9a^{2}-1}
Calculate 3 to the power of 2 and get 9.
\frac{1+3a+9a^{2}}{\left(3a-1\right)\left(9a^{2}+3a+1\right)\left(1+3a\right)}
Divide \frac{1}{\left(3a-1\right)\left(9a^{2}+3a+1\right)} by \frac{1+3a}{1+3a+9a^{2}} by multiplying \frac{1}{\left(3a-1\right)\left(9a^{2}+3a+1\right)} by the reciprocal of \frac{1+3a}{1+3a+9a^{2}}.
\frac{1}{\left(3a-1\right)\left(3a+1\right)}
Cancel out 9a^{2}+3a+1 in both numerator and denominator.
\frac{1}{\left(3a\right)^{2}-1}
Consider \left(3a-1\right)\left(3a+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
\frac{1}{3^{2}a^{2}-1}
Expand \left(3a\right)^{2}.
\frac{1}{9a^{2}-1}
Calculate 3 to the power of 2 and get 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}