Evaluate
\frac{3}{25}+\frac{4}{25}i=0.12+0.16i
Real Part
\frac{3}{25} = 0.12
Share
Copied to clipboard
\frac{1}{\left(2-i\right)^{2}}
Use the rules of exponents to simplify the expression.
\left(2-i\right)^{2\left(-1\right)}
To raise a power to another power, multiply the exponents.
\left(2-i\right)^{-2}
Multiply 2 times -1.
\frac{3}{25}+\frac{4}{25}i
Raise 2-i to the power -2.
Re(\frac{1}{3-4i})
Calculate 2-i to the power of 2 and get 3-4i.
Re(\frac{1\left(3+4i\right)}{\left(3-4i\right)\left(3+4i\right)})
Multiply both numerator and denominator of \frac{1}{3-4i} by the complex conjugate of the denominator, 3+4i.
Re(\frac{3+4i}{25})
Do the multiplications in \frac{1\left(3+4i\right)}{\left(3-4i\right)\left(3+4i\right)}.
Re(\frac{3}{25}+\frac{4}{25}i)
Divide 3+4i by 25 to get \frac{3}{25}+\frac{4}{25}i.
\frac{3}{25}
The real part of \frac{3}{25}+\frac{4}{25}i is \frac{3}{25}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}