Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{\left(2-i\right)^{2}}
Use the rules of exponents to simplify the expression.
\left(2-i\right)^{2\left(-1\right)}
To raise a power to another power, multiply the exponents.
\left(2-i\right)^{-2}
Multiply 2 times -1.
\frac{3}{25}+\frac{4}{25}i
Raise 2-i to the power -2.
Re(\frac{1}{3-4i})
Calculate 2-i to the power of 2 and get 3-4i.
Re(\frac{1\left(3+4i\right)}{\left(3-4i\right)\left(3+4i\right)})
Multiply both numerator and denominator of \frac{1}{3-4i} by the complex conjugate of the denominator, 3+4i.
Re(\frac{3+4i}{25})
Do the multiplications in \frac{1\left(3+4i\right)}{\left(3-4i\right)\left(3+4i\right)}.
Re(\frac{3}{25}+\frac{4}{25}i)
Divide 3+4i by 25 to get \frac{3}{25}+\frac{4}{25}i.
\frac{3}{25}
The real part of \frac{3}{25}+\frac{4}{25}i is \frac{3}{25}.