Evaluate
\frac{2\sqrt{5}+1}{19}\approx 0.288007156
Share
Copied to clipboard
\frac{2\sqrt{5}+1}{\left(2\sqrt{5}-1\right)\left(2\sqrt{5}+1\right)}
Rationalize the denominator of \frac{1}{2\sqrt{5}-1} by multiplying numerator and denominator by 2\sqrt{5}+1.
\frac{2\sqrt{5}+1}{\left(2\sqrt{5}\right)^{2}-1^{2}}
Consider \left(2\sqrt{5}-1\right)\left(2\sqrt{5}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\sqrt{5}+1}{2^{2}\left(\sqrt{5}\right)^{2}-1^{2}}
Expand \left(2\sqrt{5}\right)^{2}.
\frac{2\sqrt{5}+1}{4\left(\sqrt{5}\right)^{2}-1^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{2\sqrt{5}+1}{4\times 5-1^{2}}
The square of \sqrt{5} is 5.
\frac{2\sqrt{5}+1}{20-1^{2}}
Multiply 4 and 5 to get 20.
\frac{2\sqrt{5}+1}{20-1}
Calculate 1 to the power of 2 and get 1.
\frac{2\sqrt{5}+1}{19}
Subtract 1 from 20 to get 19.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}