Skip to main content
Solve for α
Tick mark Image

Similar Problems from Web Search

Share

1=2\left(\alpha -4\right)\left(\alpha +2\right)
Variable \alpha cannot be equal to any of the values -2,4 since division by zero is not defined. Multiply both sides of the equation by \left(\alpha -4\right)\left(\alpha +2\right).
1=\left(2\alpha -8\right)\left(\alpha +2\right)
Use the distributive property to multiply 2 by \alpha -4.
1=2\alpha ^{2}-4\alpha -16
Use the distributive property to multiply 2\alpha -8 by \alpha +2 and combine like terms.
2\alpha ^{2}-4\alpha -16=1
Swap sides so that all variable terms are on the left hand side.
2\alpha ^{2}-4\alpha -16-1=0
Subtract 1 from both sides.
2\alpha ^{2}-4\alpha -17=0
Subtract 1 from -16 to get -17.
\alpha =\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 2\left(-17\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -4 for b, and -17 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
\alpha =\frac{-\left(-4\right)±\sqrt{16-4\times 2\left(-17\right)}}{2\times 2}
Square -4.
\alpha =\frac{-\left(-4\right)±\sqrt{16-8\left(-17\right)}}{2\times 2}
Multiply -4 times 2.
\alpha =\frac{-\left(-4\right)±\sqrt{16+136}}{2\times 2}
Multiply -8 times -17.
\alpha =\frac{-\left(-4\right)±\sqrt{152}}{2\times 2}
Add 16 to 136.
\alpha =\frac{-\left(-4\right)±2\sqrt{38}}{2\times 2}
Take the square root of 152.
\alpha =\frac{4±2\sqrt{38}}{2\times 2}
The opposite of -4 is 4.
\alpha =\frac{4±2\sqrt{38}}{4}
Multiply 2 times 2.
\alpha =\frac{2\sqrt{38}+4}{4}
Now solve the equation \alpha =\frac{4±2\sqrt{38}}{4} when ± is plus. Add 4 to 2\sqrt{38}.
\alpha =\frac{\sqrt{38}}{2}+1
Divide 4+2\sqrt{38} by 4.
\alpha =\frac{4-2\sqrt{38}}{4}
Now solve the equation \alpha =\frac{4±2\sqrt{38}}{4} when ± is minus. Subtract 2\sqrt{38} from 4.
\alpha =-\frac{\sqrt{38}}{2}+1
Divide 4-2\sqrt{38} by 4.
\alpha =\frac{\sqrt{38}}{2}+1 \alpha =-\frac{\sqrt{38}}{2}+1
The equation is now solved.
1=2\left(\alpha -4\right)\left(\alpha +2\right)
Variable \alpha cannot be equal to any of the values -2,4 since division by zero is not defined. Multiply both sides of the equation by \left(\alpha -4\right)\left(\alpha +2\right).
1=\left(2\alpha -8\right)\left(\alpha +2\right)
Use the distributive property to multiply 2 by \alpha -4.
1=2\alpha ^{2}-4\alpha -16
Use the distributive property to multiply 2\alpha -8 by \alpha +2 and combine like terms.
2\alpha ^{2}-4\alpha -16=1
Swap sides so that all variable terms are on the left hand side.
2\alpha ^{2}-4\alpha =1+16
Add 16 to both sides.
2\alpha ^{2}-4\alpha =17
Add 1 and 16 to get 17.
\frac{2\alpha ^{2}-4\alpha }{2}=\frac{17}{2}
Divide both sides by 2.
\alpha ^{2}+\left(-\frac{4}{2}\right)\alpha =\frac{17}{2}
Dividing by 2 undoes the multiplication by 2.
\alpha ^{2}-2\alpha =\frac{17}{2}
Divide -4 by 2.
\alpha ^{2}-2\alpha +1=\frac{17}{2}+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
\alpha ^{2}-2\alpha +1=\frac{19}{2}
Add \frac{17}{2} to 1.
\left(\alpha -1\right)^{2}=\frac{19}{2}
Factor \alpha ^{2}-2\alpha +1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(\alpha -1\right)^{2}}=\sqrt{\frac{19}{2}}
Take the square root of both sides of the equation.
\alpha -1=\frac{\sqrt{38}}{2} \alpha -1=-\frac{\sqrt{38}}{2}
Simplify.
\alpha =\frac{\sqrt{38}}{2}+1 \alpha =-\frac{\sqrt{38}}{2}+1
Add 1 to both sides of the equation.